期刊文献+

决策树在短期电力负荷预测中的应用 被引量:3

Application of Decision Tree on Short-Term Load Forecasting
下载PDF
导出
摘要 提出用C4.5决策树方法解决负荷预测的样本多样性问题,并进行短期负荷预测。通过计算信息增益找出决策树的最佳生成方案,对连续属性计算其熵值找出最佳分段点进行离散化,阐述了规则的生成及其在短期电力负荷预测中的应用方法,算例结果表明,计算精度较高。 This paper presents the decision tree method to forecast the electrical load with diverse samples. Entropy and information gain is calculated to get the best decision tree. Entropy is also used to disperse continuous data attributes and get the best splitting point. The paper describes the way of generating decision tree hales which is applied to short-term load forecasting. Calculation result by the method on a real power grid is proves the applicability of the presented method.
出处 《华中电力》 2009年第1期15-18,共4页 Central China Electric Power
关键词 决策树 负荷预测 信息增益 离散化 数据挖掘 decision tree load forecasting entropy information gain decision tree dispersion highly precise, which data mining
  • 相关文献

参考文献8

  • 1周佃民,管晓宏,孙婕,黄勇.基于神经网络的电力系统短期负荷预测研究[J].电网技术,2002,26(2):10-13. 被引量:93
  • 2Jiawai Han,Micheline Kamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.
  • 3U.M.Fayyad.Advances in Knowledge Discovery and Data Mining[M].AAA1 Press, 1996.
  • 4Hiroyuki Mori,Noriyuki Kosemura.Optimal Regression Tree Based Rule Discovery for Short-term Load Forecasting[J]. Power Engineering Society Winter Meeting, 2001(2) :421-426.
  • 5J.R. QUINLAN. C4.5 :Programs for Machine Learning [M].Morgan Kaufmann, 1993.
  • 6罗军,何光宇,张思远,万源,李小锐.基于负荷点相似的地区短期负荷预测新方法[J].电网技术,2007,31(6):67-71. 被引量:15
  • 7Jingfei Yang,Juergen StenzelShort-termLoad Forecasting With Increment Regression Tree [J]. Journal of Electric Power Systems Research,2006,76(9):880-887.
  • 8Chandra,B.;Varghese P.P..Fuzzv SLIQ Decision Tree Algorithm[J]. IEEE Transactions on Systems Man,and Cybernetics, 2008,38(5):1294-1308.

二级参考文献19

  • 1韩慧,毛锋,王文渊.数据挖掘中决策树算法的最新进展[J].计算机应用研究,2004,21(12):5-8. 被引量:47
  • 2冯丽,邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报,2005,25(10):29-34. 被引量:26
  • 3赵登福,庞文晨,张讲社,王锡凡.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):8-13. 被引量:36
  • 4张乃尧 阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1994..
  • 5Almuallim H.Efficient algorithm for optimal pruning of decision trees[J].Artificial Intelligence,1996,83(2):347-362.
  • 6Breiman L,Friend J H,Olshen R A.Classification and regression trees[M].California:Belmont Wadsworth Inc,1984.
  • 7Quinlan J R.Induction of decision trees[J].Machine Learning,1986,81-106.
  • 8Nakashima T,Nakai G,Ishibuchi H.A fuzzy rule-based system for ensembling classification systems[C].Proceedings of IEEE International Conference on Fuzzy Systems,Honolulu,2002.
  • 9Fonseca C M,Fleming P J.Genetic algorithm for multiobjecfive:formulation,discussion and generalizafion[C].Proceedings of the 5th International Conference on Genetic Algorithms,San Mateo,California,1993.
  • 10Prodromidis A L.Cost complexity pruning of meta-classifiers[C].Proceedings of the National Conference on Artificial Intelligence,Orlando,Rorida,1999.

共引文献104

同被引文献36

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部