期刊文献+

一类二阶脉冲微分方程三点边值问题的多重正解 被引量:1

Multiple Positive Solutions of a Class of Nonlinear Three-point Boundary Value Problem for Second Order Impulsive Differential Equations
下载PDF
导出
摘要 利用锥上Krasnoselskii不动点定理,考察了一类二阶脉冲微分方程三点边值问题的多重正解的存在性,得到了该问题至少存在两个正解的充分条件。 By using Krasnoselskii's fixed point theorem in a cone, we study the existence of multiple positive solutions for the second order three-point boundary value problem with impulse terms. The results show that there are at least two positive solutions under some certain conditions.
出处 《太原科技大学学报》 2009年第1期63-65,共3页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金项目(2007011012)
关键词 三点边值问题 正解 不动点定理 three-point boundary value problem ,positive solutions ,fixed point theorem
  • 相关文献

参考文献4

  • 1WANG S, LIU J. Coexistence of positive solutions of nonlinear three-point boundary value and its conjugate problem [ J ]. J. Math. Anal. Appl. ,2007,330(1) :334-351.
  • 2LIU B. Positive solutions of a nonlinear three-point boundary value problem [ J ]. Appl. Math. Comput. , 2002 (132) : 11-28.
  • 3LIN X,D JIANG. Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations[J].J. Math. Anal. Appl. ,2006(321):501-514.
  • 4AGARWAL R P, REGAN D O. Multiple nonnegative solutions for second order impulsive differential equations[J]. Appl. Math. Comput. ,2000(114) :51-59.

同被引文献7

  • 1NAZARENKO V G. Influence of delay on auto oscillation in cell population[ J]. Biofisika, 1976,21:352-356.
  • 2KUBIACZYK I, SAKER S H. Oscillation and stability in nonlinear delay differential equations of population dynamics [ J ]. Math Comput Modelling, 2002,35 : 295-301.
  • 3YAN JURANG. Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model [ J ]. J Math Anal App1,2003,279 : 111-120.
  • 4SAKER S H, ALZABUT J O. Existence of periodic solutions global attractivity andoscillation of impulsive delay population model [ J]. Nonlinear Anal,2007,8 : 1029-1039.
  • 5YAN JURANG,ZHAO AIMIN. Existence and global attractivity of periodic solution for an impulsive delay differential equation with allee effect [ J ]. J Math Anal App1,2005 ,309 :489-504.
  • 6LADDE G S, LAKSHMIKANTHAM V. Oscillation Theory of Differential Equations with Deviating Arguments [ M ]. New York : Marcel Dekker, 1987.
  • 7景冰清,王丽丽.Lasota-Wazewska模型的唯一周期正解的存在性[J].太原科技大学学报,2008,29(3):217-219. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部