期刊文献+

离群点检测算法研究 被引量:5

Research of Outlier Detection Algorithm
下载PDF
导出
摘要 离群点检测是数据挖掘中一项重要内容,通过对当前有代表性的离群点检测算法的分析和比较,对各算法的优缺点进行了总结。针对高维数据中离群点检测算法进行了分析和研究,提出了高维数据中离群点检测需要注意的一些问题,从而便于研究者以这些算法为基础,在此基础上提出新的改进算法。 Outlier detection is an important content of data mining. This paper summarized their features by comparing and analyzing major outlier detection algorithms and gave some problems needing to be attended through analyzing and researching the outlier detection algorithms in high dimensional data. Based on these algorithms, the researchers can proceed a further analysis and propose improved algorithms.
作者 张宁
出处 《桂林电子科技大学学报》 2009年第1期22-25,共4页 Journal of Guilin University of Electronic Technology
关键词 离群点 高维数据 数据流 异常检测 outlier high--dimension data data stream anomaly detection
  • 相关文献

参考文献25

  • 1HAWKINS D: Identification of Outliers [M]. London:Chapman and Hall, 1980.
  • 2BARNETT V,LEWIS T. Outliers in Statistical Data[M]. New York : John Wiley & Sons, 1994.
  • 3史东辉,张春阳,蔡庆生.离群数据的挖掘方法研究[J].小型微型计算机系统,2001,22(10):1234-1236. 被引量:16
  • 4HAN Jia-wei, KAMBER M. Data Mining:Concepts and Techniques [M]. Academic Press, 2001.
  • 5KNORR E M, NG R T. Algorithms for Mining Distance-based Outliers in Large Datasets[C]//Proc. of Int. Conf. Very Large Data-bases (VLDB'98). 1998 : 392-403.
  • 6BAY S, SCHWABACHER M. Mihing Distance-based Outliers in Near Linear Time with Randomization and Simple Pruning Rule [C]. Washington DC : SIGKDD'03,2003.
  • 7ANGIULLI F,PIZZUTI C. Fast Outlier Detection in High Dimensional Spaces [C]//Proceedings of the 6th European Conference on the Principles of Data Mining and Knowledge Discovery. 2002:15-16.
  • 8RAMASWAMY S, RASTOGI R,SHIM K. Efficient Algorithms for Mining Outliners from Large Datasets[C]//Proceedings of the ACM SIGMOD Conference. 2000 : 427-438.
  • 9SHERHAR S,LU C,ZHANG P. A unified approach to detecting spatial outliers [J]. Geolnformatica, 2003,7 (2) : 139-166.
  • 10BREUNIG M M, KRIEGEL H P, NG R, et al. LOF : Identifying Density-Based Local Outliers[C]// Proc. of ACM SIG- MOD Conf, 2000.

二级参考文献26

  • 1[1]Knorr E,Ng R. Algorithms for mining distance-based outliers in large datasets[C]. In:Proc. of the 24th VLDB Conference.New York,USA,1998.392~403
  • 2[2]Knorr E , Ng R. A Unified approach for mining outliers:properties and computation[C]. In: Proc. of 1997 Int Conf. Knowledge Discovery and Data Mining(KDD'97),Newport Beach,California, 1997.219~222
  • 3[3]Knorr E ,Ng R. Finding intensional knowledge of distance-based[C]. In:Proc. of the 25th VLDB Conference.Edinburgh,Scotland,1999.211-222
  • 4[4]Barnett V and Lewis T. Outliers in statistical data[M]. New York:John Wiley &Sons,1994
  • 5[5]Arning A, Agrawal R , Raghavan P .A linear method for deviation in large database[C]. In :Proc. of Int. Conf. Data Mining and Knowledge Discovery(KDD96),Portland,1996. 164~169
  • 6Shaw M, Subramaniam C.Knowledge management and data mining for marketing[J].Decision Support Systems, 2001, 31:127-137.
  • 7Peter V D P.Data mining in direct marketing databases[J].World Scientific,1998, 15.
  • 8Piatetsky-Shapiro G and Steingold S.Measuring lift quality in database marketing[J].SIGKDD Explorations, 2000,2:76-80.
  • 9Holmgren E B and Koch G G.Statistical modeling of dose-response relationships in clinical trials--a case study[J].Journal of Biopharmaceutical Statistics, 1997,7(2):301-312.
  • 10Matthew V M, Philips K C.An analysis of the 1999 DARPA/Lincoln laboratories evaluation data for network anomaly detection[E/OL].Florida Institute of Technology Technical Report TR-CS-2003-02, http://www.cs.fit.edu/~mmahoney.

共引文献72

同被引文献80

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部