摘要
离群点检测是数据挖掘中一项重要内容,通过对当前有代表性的离群点检测算法的分析和比较,对各算法的优缺点进行了总结。针对高维数据中离群点检测算法进行了分析和研究,提出了高维数据中离群点检测需要注意的一些问题,从而便于研究者以这些算法为基础,在此基础上提出新的改进算法。
Outlier detection is an important content of data mining. This paper summarized their features by comparing and analyzing major outlier detection algorithms and gave some problems needing to be attended through analyzing and researching the outlier detection algorithms in high dimensional data. Based on these algorithms, the researchers can proceed a further analysis and propose improved algorithms.
出处
《桂林电子科技大学学报》
2009年第1期22-25,共4页
Journal of Guilin University of Electronic Technology
关键词
离群点
高维数据
数据流
异常检测
outlier
high--dimension data
data stream
anomaly detection