期刊文献+

导电聚苯胺纳米纤维对聚乙烯/炭黑复合体系电阻行为的影响

Influence of Conducting Polyaniline Nanofibers on the Resistivity Behavior of Low-Density Polyethylene/Carbon Black Composites
下载PDF
导出
摘要 采用水溶液氧化聚合和热掺杂相结合的技术制备十二烷基苯磺酸掺杂的聚苯胺(PANI-DBSA)纳米纤维,并将PANI-DBSA纳米纤维与低密度聚乙烯(LDPE)和炭黑(CB)进行熔融共混制得PANI-DBSA/LDPE/CB导电复合材料,研究了PANI-DBSA纤维的引入对导电复合材料电阻行为的影响。结果表明,添加PANI-DBSA纳米纤维,复合材料的逾渗阀值移向较低炭黑含量,复合材料的PTC强度得到一定程度的提高,复合材料的电阻率-温度曲线的热循环稳定性得以改善。 Polyaniline (PANI) nanofibers doped by dodecylbenzenensulfonic acid (PANI-DBSA) were synthesized by the chemical oxidative polymerization and thermal doping technique. Conducting composites composed of PANI- DBSA nanofibers, low-density polyethylene (LDPE) and carbon black (CB) were prepared by melt processing. The effect of PANI-DBSA nanofibers on the resistivity behavior was investigated in detail. The results show that the LDPE/CB/PANI-DBSA conducting composites present a lower percolation threshold due to the easy formation of conducting paths for PANI-DBSA nanofibers in the LDPE. The positive temperature coefficient (PTC) intensity is enhanced and the reproducibility of electrical conductivity in heating/cooling cycles is improved after the introduction of PANI-DBSA nanofibers.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2009年第2期77-80,共4页 Polymer Materials Science & Engineering
关键词 聚苯胺纳米纤维 低密度聚乙烯 炭黑 PTC特性 电阻行为 polyaniline nanofibers low-density polyethylene carbon black PTC effect resistivity behavior
  • 相关文献

参考文献9

  • 1DAS N C, CHAKI T K, KHASTGIR D. Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black-filled ethylene-vinyl acetate copolymer composites[J]. J. Apph Polym. Sci., 2003, 90(8): 2073-2082.
  • 2FENG J Y, CHEM C M. Positive and negative coefficient effects of an alternating copolymers of tetrafluoroethylene-ethylene containing carbon black-filled HDPE particles [ J ]. Polymer, 2000, 41 ( 19 ) : 7279-7282.
  • 3MIRONI-HARPAZ I, NARKIS M. Thermo-electric behavior (PTC) of carbon black-containing PVDF/UHMWPE and PVDF/ XL-UHMWPE blends[J]. Polym. Eng. Sci., 2001, 41(2): 205- 221.
  • 4YU G, ZHANG M Q, ZENG H M. Carbon-black-filled polyolefine as a positive temperature coefficient material: effect of composition, processing, and filler treamnet[J]. J. Appl. Polym. Sci., 1998, 70(3) : 559-566.
  • 5ADIB F, KO C C, LIU G J, et al. Polymer grafted carbon black primarily for use in positive thermal coefficient over-current protection devices: US, 2,003,096,888[P]. 2003-05-22.
  • 6JIA W T, CHEN X F, LI S H. Effects of irradiation on PTC performance of LDPE/EPDM blends filled with carbon blacks[J ]. J. Appl. Polym. Sci., 1996, 60(13): 2317-2320.
  • 7NARKAIS M, VACAM A. Resistivity behavior of filled electrically conductive crosslinked polyethylene [J]. J. Appl. Polym. Sci., 1984, 29(6): 1639-1652.
  • 8LEE J H, KIM S K, KIM N H. Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites[J]. Scropta Materialia, 2006, 55(12): 1119-1122.
  • 9SU C, WANG G C, HUANG F R, et al. Melt-processed polyaniline nanofibers/LDPE/EAA conducting composites [ J ]. Polymer Composites, 2007, doi: 10. 1002/pc. 20490.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部