期刊文献+

活性粉末混凝土的层裂性能研究 被引量:12

THE SPALLING BEHAVIOUR OF REACTIVE POWDER CONCRETE
原文传递
导出
摘要 采用60%的超细工业废渣取代水泥制备了一种生态型的活性粉末混凝土(RPC),采用分离式霍普金森压杆装置对不同纤维掺量的RPC材料进行了层裂性能实验。研究得出了入射波强度和冲击次数对层裂过程中应力波传播的影响规律。按一维弹性波理论编写了入射压缩波和反射拉伸波在试件自由端附近相互作用的程序,计算出试件自由端附近拉应力的分布,由试件的层裂位置得到材料的层裂强度。结果表明,随着入射波强度的增加和冲击次数的提高,材料的拉伸损伤逐渐增加,反射拉伸波的强度逐渐降低。RPC材料层裂强度和破坏形态具有明显的应变率效应,层裂强度和破坏程度随着应变率的提高而增加。通过纤维的增强作用,层裂裂缝的宽度和深度都降低了。 Reactive powder concrete (RPC) is prepared by replacing 60% of the cement with ultra-fme industrial waste powder. The spalling behaviour of RPC with different fiber volume fractions is studied using split Hopkinson pressure bar (SHPB). The effects of incident waves and impact times on the stress wave propagation are investigated. The program to calculate the interaction between compressive and tensile waves was developed based on one-dimensional elastic wave theory, and it was used to obtain the tensile stress distribution near the free side of the specimen. The spalling strength of the material is obtained according to the spalling position and the tensile stress distribution. The strain rate effects on spalling strength and fracture patterns are examined. Results show that (1) the amplitude of the reflective tensile wave decreases with the increase of the amplitude of the incident wave and impact times; (2) with the increase of strain rate, the spalling strength of RPC is enlarged and its fracture degree increases; (3) the depth and width of cracks on spalling diminish by the introduction of fiber reinforcement.
作者 赖建中 孙伟
出处 《工程力学》 EI CSCD 北大核心 2009年第1期137-141,148,共6页 Engineering Mechanics
基金 国家自然科学基金项目(50808101) 江苏省基础研究计划(自然科学基金)项目(BK2008417) 中国博士后科学基金项目(20080431100)
关键词 活性粉末混凝土 层裂 分离式霍普金森压杆 应变率 纤维 reactive powder concrete spalling split Hopkinson pressure bar strain rate fiber
  • 相关文献

参考文献9

  • 1Bonneau O, Poulin C, Dugat J. Reactive powder concrete: from theory to practice [J]. Concrete International, 1996, 18(4): 47-49.
  • 2Richard P, Cheyrezy M. Composition of reactive powder concrete [J]. Cement and Concrete Research, 1995, 25(7): 1501-1511.
  • 3Dugat J, Roux N, Bernier G Mechanical properties of reactive powder concretes [J]. Materials and Structures, 1996, 29(5): 233-240.
  • 4Marcel C. Structural applications of RPC [J]. Concrete, 1999(1): 20-23.
  • 5Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering, 2001, 25: 387-409.
  • 6Brara A, Klepaczko J R. Experimental characterization of concrete in dynamic tension [J]. Mechanics of Materials, 2006, 38: 253-267.
  • 7胡时胜,张磊,武海军,巫绪涛.混凝土材料层裂强度的实验研究[J].工程力学,2004,21(4):128-132. 被引量:34
  • 8张磊,胡时胜.混凝土层裂强度测量的新方法[J].爆炸与冲击,2006,26(6):537-542. 被引量:19
  • 9Sebastien H, Frederic V D, Laurent D. Discrete element modeling of concrete submitted to dynamic loading at high strain rates [J]. Computers & Structures, 2004, 82 (29/30): 2509-2524.

二级参考文献16

  • 1胡时胜,张磊,武海军,巫绪涛.混凝土材料层裂强度的实验研究[J].工程力学,2004,21(4):128-132. 被引量:34
  • 2[3]Goldsmith W, Polivka M, Yang T. Dynamic behavior of concrete [J]. Exp Mech, 1966, 6: 65-79.
  • 3[4]Watson A J, Sanderson A J. The resistance of concrete to shock [C]. Proceeding of the Conference on Mechanics and Physics, Behavior of Materials Under Dynamic Loading, 1979. Oxford: The Institute of Physics, 1979.
  • 4[5]J R Klepaczho, A Brara. An experiment method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering, 2001, 25: 387-409.
  • 5[6]F Rubio, etc. The Spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. International Journal of Impact Engineering, 2002, 27: 161-177.
  • 6[2]London J W, Quinney H. Experiment with the pressure Hopkinson bar [J]. Proc Roy Soc London, ser A: Math Phys Sci, 1923; A103: 622-43.
  • 7Galvez F, Diaz-Rubio, Rodriguez Perez J, et al. The spalling of long bars as a reliable method measuring the dynamic tensile strength of ceramics[J]. International Journal of Impact Engineering, 2002,27:161--177.
  • 8Novikov S A. Spall strength of materials under shock load[J]. Journal of Applied Mech Tech Phys, 1967,3:109--120.
  • 9Hallquist John O. LS-DYNA970 Theoretical Manual[M]. Livermore CA:Livermore Software Technology Corporation, 1998 : 275-- 276.
  • 10Wang L L, Huang D J, Gan S. Nonlinear viscoelastic constitutive relations and nonlinear viscoelastic wave propagation for polymers at high strain rates, in constitutive relation in high/very high strain rates[A]. Kawata K, Shioiri J. IUTAM Symposium[C]. Springer-Verlag, Tokyo, 1996:137-- 146.

共引文献41

同被引文献173

引证文献12

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部