摘要
针对运动控制系统的非线性动态摩擦力,为提高系统的位置跟踪精度,利用一种径向基函数(RBF)神经网络滑模控制方法。采用一种具有指数形式的非线性摩擦力,利用径向基函数神经网络在线估计系统的不确定动力学,利用李亚普诺夫稳定性理论推导出网络权值的在线自适应律。仿真结果表明了该控制策略的有效性。
A radial basis function (RBF) neural network sliding mode method was used to compensate nonlinear dynamic friction that existed in motion control system and to improve the system position tracking performance. A kind of exponential type friction was adopted, and a radial basis function neural work estimator was proposed to estimate the uncertain system dynamics on-line, the parameter on-line adaptive laws were derived in the sense of Lyapunov stability theorem. Simulation results show the validity of proposed RBF neural network sliding mode control method.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2009年第3期776-779,788,共5页
Journal of System Simulation