期刊文献+

二维EMD应用在图像边缘特征提取中的仿真研究 被引量:11

Simulation Research of Applying Two-dimensional Empirical Mode Decomposition on Image Feature Extraction
下载PDF
导出
摘要 图像边缘特征提取是图像处理理论和应用研究的主要内容之一,传统的特征提取方法简单易行,但提取的图像精度不高。为此,提出了一种基于二维EMD及Riesz变换的双重复合图像边缘特征提取方法。首先通过二维EMD将图像分解成多层IMF分量,然后利用Riesz变换的局部"高保真性",替代Hilbert变换进行各分量的局部特性分析,给出更高分辨率的图像边缘特征提取算法。最后,仿真分析验证了该算法的可行性和有效性。 The edge feature extraction of image is one of the research fields of image processing theory and application. The traditional methods of image feature extraction are simple and proficient, but the accurate performance of the feature extracted is not even higher. As such, a new method for extracting image edge feature was proposed by using the two-dimensional Empirical Mode Decomposition (2-D EMD) and Riesz Transform. Firstly, the image was decomposed to multi-level Intrinsic Mode Function (IMF) by 2-D EMD, and then the Riesz Transform with stronger local preserving ability was used for analyzing their local properties instead of the Hilbert Transform, by which the edge feature extraction with higher resolution was carried on. Finally, simulation shows that the proposed method is feasible and valid.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第3期799-801,822,共4页 Journal of System Simulation
基金 国家自然科学基金(60672034) 高等学校博士点基金(20060217021) 黑龙江省自然科学基金(zjg0606-01)
关键词 二维EMD RIESZ变换 特征提取 仿真研究 2-D EMD Riesz transform feature extraction simulation research
  • 相关文献

参考文献11

  • 1Rafael C G, Richard E W. Digital Image Processing [M]. Second Edition. Beijing, China: Publishing House of Electronics Industry, 2003: 306-321.
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and nonstationary series analysis [J]. Proc R Soc (S1471-2946), 1998, A454: 903-995.
  • 3Nunes J C, Bouaoune Y, Delechelle E, Niang O Bunel. Image analysis by bi-dimensional empirical mode decomposition [J]. Image Vis Comput (S0262-8856), 2003, 21: 1019-1026.
  • 4He L L, Wang H Y. Spatial-variant Image Filtering Based on Bi-dimensional Empirical Mode Decomposition [C]// The 18th International Conference on Pattern Recognition, Hong Kong. Hong Kong, China: IEEE, 2006, 2:1196-1199.
  • 5J C Nunes, O Niang, Y Bouanoune, et al. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models [M]// Signal Processing and Its Applications (ISBN: 0-7803-7946-2). Paris, France: IEEE, 2003: 633-635.
  • 6Anna Linderhe. 2-D empirical mode decompositions- in the spirit of image compression [J]. Proceeding of SPIE (S0277-786X), 2002, 4738: 1-8.
  • 7Anna Linderhed. Compression by image empirical mode decomposition [C]// IEEE Image Processing 2005 (ICIP 2005) (ISBN0-7803-9134-9). USA: IEEE, 2005: 533-536.
  • 8Harishwaran Hafiharan, Andreas Koschan, Besma Abidi, Andrei Gribok. Fusion of visible and infrared images using empirical mode decomposition to improve face recognition [C] //IEEE ICIP 2006 (S1522-4880). USA: IEEE, 2006: 2049-2052.
  • 9S L Hahn. Hilbert Transform in Signal Processing [M]. Boston, MA, USA: Artech House, 1996.
  • 10Fetsberg M Sommer. The monogenic Signal [J]. IEEE Trans Signal Process (S 1053-587X), 2001, 49(12): 3136-3144.

同被引文献76

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部