期刊文献+

DTI图像恢复的向量复扩散模型 被引量:1

Restoring DTI images by vector-valued complex diffusion model
下载PDF
导出
摘要 为了减小扩散张量图像(DTI)中广泛存在的赖斯噪声影响,提出了向量复扩散模型。该模型是标量复扩散模型的推广和发展。为了评价该模型的去噪性能,对向量图像-扩散加权(DW)图像进行了恢复实验。基于模拟和真实数据进行的实验表明,相对于标量复扩散滤波器,向量复扩散滤波方法得到的PSNR和SMSE数值更高,追踪到的纤维数量更多、长度更长,故其去噪性能优于标量复扩散模型。另外,在信噪比较低情况下该模型优于实数域P&M向量滤波器。 To decrease the effects of the Rician noise introduced into the diffusion tensor images, vector-valued complex diffusion model is presented. The presented smoothing strategy is the development of the scalar typed model. To evaluate the efficiency of the proposed model in removing Rician noise of the vector valued data-DW images, experiments based on synthetic and real data are designed. All the experiment results prove quantitatively and visually the better performance of the presented filter, compared with the scalar typed filtering model, by higher PSNR and SMSE metric values and more, longer fibers. Furthermore, the presented model filters the images better at low SNR, compared with the vector-valued P&M filter.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第3期634-636,673,共4页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目(2003CB716103) 上海市教委一般基金项目(CL200538) 上海师范大学校理工科科研基金项目(SK200734)
关键词 扩散张量成像 恢复 向量复扩散 峰值信噪比 信号均方差之比 diffusion tensor imaging restoration vector-valued complex diffusion PSNR SMSE
  • 相关文献

参考文献14

  • 1Nowak R D.Wavelet-based rician noise removal for magnetic resonance imaging [J]. IEEE Trans Image Proc, 1999,8 (10): 1408-1419.
  • 2Lazar M.White matter tractography: an error analysis and human brain tract reconstruction study[D]. Salt Lake City: University of Utah, 2003.
  • 3McGraw T, Vemuri B C,Chen Y X,et al.DT-MR/denoising and neuronal fiber tracking[J]. Medical Image Analysis,2004,8(2): 95-111.
  • 4Pennec X, Fillard P, Ayache N A. Riemannian framework for tensor computing[J].Intemational Journal of Computer Vision, 2006,66(1):41-66.
  • 5Saurav B,Thomas F, Ross W.Gaussian noise removal in diffusion tensor MRI[C]. Lecture Notes in Computer Science-4190, MI- CCA,2006:117-125.
  • 6张相芬,叶宏,陈武凡.基于复扩散的DTI图像的恢复[c].中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集.西安:西安交通大学出版社,2007.
  • 7Perona P, Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans Pattern Anal Mach Intell,1990,12 (7):629-639.
  • 8Gilboa G,Sochen N,Zeevi Y Y.Forward-and-backward diffusion processes for adaptive image enhancement and denoising [J]. IEEE Transactions on Image Processing,2002,11:689-703.
  • 9Tschumperle D. PDE's based regularization of multivalued images and applications[D].Sophia Antipolis:Unisersity of Sophia Antipolis,2002.
  • 10Weickert J,Brox T.Diffusion and regularization of vector-and matrix-valued images[R]. Germany:Universitat des Saarlandes,2002.

同被引文献15

  • 1Basset P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biological Phys- ics,1994, 66:259-267.
  • 2Stejskal E O, Tanner J E. Spin diffusion measure- ments: spin echoes in the presence of a time-depend- ent field gradient[J]. Journal of Chemical Physics, 1965, 42:288-292.
  • 3McGraw T, Vermuri B C, Chen Y, et al. DT-MRI denoising and neuronal fiber tracking[J]. Medical Image Analysis,2004,8: 95-111.
  • 4Saurav B, Thomas F, Ross W, Rieian noise removal in diffusion tensor MR[J]. MICCAI, LNCS4190, 2006:117 -125.
  • 5Martin-Fernandez M, Munoz-Moreno E, Cammoun L, et al. Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D reg- ularization of DWI data[J]. Medical Image Analysis, 2009,13: 19-35.
  • 6Nunes J C, Bouaoune Y, Delechelle E, et al. Imageanalysis by bidimensional empirical mode decomposi- tion-J~. Image and Vision computing, 2003, 21: 1019-1026.
  • 7Huang N E, Shen Z, Long S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc R Soc Lond Ser A, 1998,454:903 -905.
  • 8Linderhed A. Compression by image empirical mode decomposition[C] // Image Processing, IEEE Inter- national Conference on Image Processing. Piscat- away, USA:IEEE, 2005: 553-556.
  • 9Damerval C, Sylvain M, Valerie P. A fast algorithm for bidimensional EMD [J]. Signal Processing Let- ters, IEEE, 2005,12(10) :701-704.
  • 10Nunes J C, Bouaoune Y, Delechelle E. Image analy- is by bidi-mensional empirical mode decomposition[J].Image and Vision Computing, 2003, 21(12) : 019-1026.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部