期刊文献+

Ti基体上形成微弧氧化膜组成和结构的研究 被引量:1

Study on composition and structure of oxide film formed by microarc oxidation on Ti substrate
下载PDF
导出
摘要 在甘油磷酸钙和醋酸钙电解液中采用直流电源对纯Ti进行了微弧氧化。采用微弧氧化方法所制备的氧化膜具有粗糙多孔的结构,且微孔直径随着电压的增加而增大。AES分析表明在基体与氧化膜界面发生了扩散,从基体钛到氧化膜的表面氧的浓度逐渐增大,钛的浓度逐渐减小。XPS分析表明氧化膜的组成随着所施加的微弧氧化电压而改变,微弧氧化电压为200V时TiO2、Ti2O3和TiO占Ti的原子百分比分别为72.61%、22.08%和5.31%;当微弧氧化电压为350V时氧化膜表面Ti元素只由TiO2、Ti2O3组成,且占Ti的原子百分比分别为85.48%、14.52%。 Microarc oxidation was performed on Ti in electrolytes containing calcium glycerphosphate (Ca-GP) and calcium acetate (CA) using a regulated direct current power supply. The oxide films fabricated by MAO display a porous and rough structure on the surface of oxide film, the sizes ofmicropores tended to increases with increasing voltage of microarc oxidation. The AES study shows that the diffusion processes occur in the interface of the metal substrate and oxide film, the concentration of O increase, and the concentration of Ti decrease from substrate to oxide film. XPS analysis shows the compositions of oxide film change with the applied voltage, the concentration of TiO2, Ti2O3 and TiO were 72.61%, 22.08% and 5.31%, respectively when the applied voltage reach 200 V, Ti element only consists of TiO2, Ti2O3 and its concentration were 85.48%, 14.52%, respectively when applied voltage is up to 350 V.
出处 《燕山大学学报》 CAS 2009年第1期4-8,共5页 Journal of Yanshan University
关键词 微弧氧化 氧化膜 XPS microarc oxidation oxide film Ti XPS
  • 相关文献

参考文献12

  • 1Long M, Rack H J. Titanium alloys in total joint replacement-a materials seience perspective [J]. Biomaterials, 1998,19 (18): 1621-1639.
  • 2Van Noort R. Titanium: the implant material of today [J]. Journal of Materials Science, 1987,22 (11): 3801-3811.
  • 3Ong J L,Lucas L C,Raikar G N,et al..Spectroscopic characterization ofpassivated titanium in a physiologic solution [J]. Journal of Materials Science: Materials in Medicine, 1995,6 (2): 113-119.
  • 4Massaro C, Rotolo P, Riccardis F, et al.. Comparative investigation of the surface properties of commercial titanium dental implants part 1: chemical composition [J]. Journal of Materials Science: Materials inMedicine, 2002,13 (6): 535-548.
  • 5Shirkhanzade M. Electrochemical preparation of protective oxide coatings on titanium surgical alloys [J]. Journal of Materials Science: Materials in Medicine, 1992,3 (5): 322-325.
  • 6Xu W, Hu W Y, Li M H, et al.. Sol-gel derived hydroxyapatite/ titania bioeoatings on titanium substrate [J]. Materials Letters, 2006,60 (13-14): 1575-1578.
  • 7Larsson C, Thomsen P, Aronsson B O, et al.. Bone response to surface-modified titanium implants studies on the early tissue response to machined and electropolished implants with different thickness [J]. Bomaterials, 1996,17 (6): 605-616.
  • 8Li Long-Hao, Kong Young-Min, Kim Hae-Won, et al.. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation [J]. Biomaterials, 2004,25 (14): 2867-2875.
  • 9Frauchiger V M, Schlottig F, Gasser B, et al.. Anodie plasmachemical treatment of cp titanium surfaces for biomedical applications [J]. Biomaterials, 2004,25 (4): 593-606.
  • 10Schreckenbach J P, Marx G, Schlottig F, et al.. Characterization of anodic spark-converted titanium surfaces for biomedical applications [J]. Journal of Materials Science: Materials in Medicine, 1999,10 (8): 453-457.

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部