摘要
运用黎曼几何的方法证明了效用函数的存在性,引进了广义的边际效用趋势概念,该定义揭示了以效用函数为度量与一般的欧氏度量的偏离,并证明了这个定义是内蕴的.
This paper proves the existence of utility function by using Riemannian geometry methods, which build a bridge between Riemannian geometry and economics. The tendency of generalized marginal utility function is defined, indicating the departure from the Euclidean metric. The definition proves intrinsical.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2009年第1期6-9,共4页
Journal of Henan University:Natural Science
基金
The National Natural Science Foundation of Hainan Province(80601)
The National Natural Science Foundation of Hainan Office of Education(Hjkj200710)
关键词
效用函数
黎曼几何
边际效用函数趋势
utility function
Riemannian geometry
tendency of generalized marginal utility