期刊文献+

基于蚁群算法的机器人路径规划 被引量:8

Path Planning for Robots Based on Ant Colony Algorithm
下载PDF
导出
摘要 针对移动机器人规避障碍和寻找最优路径问题,提出了在复杂环境下移动机器人的一种路径规划方法。采用了栅格法建立了机器人工作平面的坐标系,整个系统由全局路径规划和局部避碰规划两部分组成。在全局路径规划中,用改进蚁群算法规划出初步全局优化路径;局部避碰规划是在跟踪全局优化路径的过程中,通过基于滚动窗口的环境探测和碰撞预测,对动态障碍物实施有效的局部避碰策略,从而使机器人能够安全顺利的到达目标点。仿真实验的结果表明了所述方法能在较短时间内找到最佳路径并规避障碍。 The problems of obstacle avoidance and path planning of mobile robot are discussed.This paper presents a new approach to robot path planning under complex environment.Grid method is used to model the workspace.The whole system includes two parts:the global path planning and the local planning for obstacle avoidance.In the global path planning,an optimal route to the goal is found by ant colony algorithms;in the local planning for obstacle avoidance,while following the global path,several collision,free strategies for different situations are used after the environment detection and collision prediction based on rolling windows in order that the robot reaches the goal safely:The results of the simulation experiment indicate that the mobile robot can find the goal within the shortest path without the collision.
出处 《微计算机信息》 2009年第5期215-217,共3页 Control & Automation
关键词 机器人路径规划 蚁群算法 全局路径规划 局部避碰策略 robot path planning ant colony algorithm global path planning local planning for obstacle avoidance
  • 相关文献

参考文献4

二级参考文献34

  • 1李仪,蔡自兴.基于贝叶斯分类器的移动机器人避障[J].控制工程,2004,11(4):332-334. 被引量:4
  • 2张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 3贺伟,梁昔明.未知环境中移动机器人SLAM问题的研究进展[J].微计算机信息,2005,21(3):179-180. 被引量:25
  • 4孙秋冬.基于八方向跟踪算法的迷宫问题新解[J].计算机应用与软件,2005,22(8):103-105. 被引量:8
  • 5Merkle D, Middendorf M. Fast ant colony optimization on runtime reconfigurable processor arrays[J]. Genetic Programming and Evolvable Machines, 2002, (3): 345-361.
  • 6Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [ C]. Pans, France, Elsevier: Proceeding of the First European Congress on Artificial Life, 1991.
  • 7Stiltzle T, Hoos H H. Max-min ant system[ J]. Future Generation Computer System, 2000,16(8): 889-914.
  • 8Colorni A. Ant system for job-shop scheduling[J]. JORBEL,1994,34(1) :39-53.
  • 9Qiong W Q, WEI P. A kind of ant colony algorithm for function optimization[J]. Beijing: Proceeding of the First International Conference on Machine and Cybernetics,2002.
  • 10Colombetti M, Dorigo M. Learning to control an autonomous robot by distributed genetic algorithm [ C ]. MIT Press: Proceedings of From Animals to Animats, Second International Conference on Simulation of Adaptive Behavior,2000.

共引文献25

同被引文献69

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部