期刊文献+

基于RBF神经网络的柴油机故障诊断 被引量:3

Fault Diagnosis of Diesel Engines Based on RBF Neural Network
下载PDF
导出
摘要 神经网络模式识别的实时性和鲁棒性使得它成为故障诊断的常用方法。本文首先介绍了RBF神经网络的构成和特性,然后将柴油机的振动信号和油管压力信号作为特征参数,运用RBF神经网络对供油系统的3种故障进行诊断分析。实践表明,RBF神经网络用于多征兆机械系统的故障诊断是有效、可行的。 The pattern recognition based on neural network is often used as the method of fault diagnosis because of its real-time and robustness. In this paper, the characteristic and configuration of RBF neural network are introduced. Vibration signals and fuel pressure signals of diesel engines are used as characteristics parameters to diagnose and analyze three faults of fuel supply system by use of RBF algorithm. The practice shows that the method of RBF neural network is applicable to fault diagnosis of multi-signs engines.
出处 《小型内燃机与摩托车》 CAS 北大核心 2009年第1期70-72,共3页 Small Internal Combustion Engine and Motorcycle
关键词 RBF神经网络 柴油机 故障诊断 RBF neural network, Diesel engine, Fault diagnosis
  • 相关文献

参考文献3

  • 1Bianchini M, Frasconi P, Cori M. Learning Without Minimum in Radial Basis Function Network. IEEE Transaction on Neural Network, 1995.3:749 - 756.
  • 2商斌梁.遗传算法与柴油机的智能诊断[D].西安:第二炮兵工程学院博士学位论文,2003.
  • 3许东,吴铮.基于MATLAB6.X的系统分析与设计[M].西安:西安电子科技大学出版社,2003.

共引文献1

同被引文献33

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部