期刊文献+

一类反向混合单调算子方程组解的存在惟一性 被引量:4

Existing uniqueness of solutions of some anti-mixed monotone operator system of equations
下载PDF
导出
摘要 运用锥与半序理论和非对称迭代方法,讨论半序Banach空间一类反向混合单调算子方程组解的存在惟一性,并给出了迭代序列收敛于解的误差估计,同时推广讨论了非反向混合单调算子方程组解的存在惟一性。所得结果改进和推广了混合单调算子方程某些已知的结果。 The cone, partial theory and non-symmetry iteration method was used to deal with the existing uniqueness of solutions to equations for a class of anti-mixed monotone operator system in Ba- nach spaces. And the iteration sequences which converge to solution of operator equations and the er- ror estimates were also given. For its application, an analysis was given to the existing uniqueness of solutions to equations for non-anti-mixed monotone operator system of equations. The results can improve some corresponding results for mixed monotone operators.
作者 徐华伟
出处 《海军工程大学学报》 CAS 北大核心 2009年第1期18-21,共4页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(10571011)
关键词 锥与半序 反向混合单调算子 非对称迭代 不动点 cone and partial ordering anti-mixed monotone operator asymmetric iteration fixed point
  • 相关文献

参考文献7

二级参考文献15

  • 1孙义静.一类非混合单调算子方程的耦合解定理及其非单调迭代算法[J].高校应用数学学报(A辑),1998,13(4):400-406. 被引量:1
  • 2郭大均 孙经先 等.非线性常微分方程泛函方法[M].济南:山东科技出版社,1995..
  • 3Zhang Shisheng, Guo Weiping. On the existence and uniqueness theorems of solutions for the systems of mixed monotone operator equations with applications, [J]. Appliet. A Journal of Chinese Universties(SerB), 1993,8:11 - 14.
  • 4Guo Dajun, Lakshmikantham v. Coupled fixed points of nonlinear operators with application[ J ]. Nonlinear Anal, 1987, ( 11 ) :623 - 632.
  • 5郭大钧,科学通报,1979年,24卷,15期,678页
  • 6郭大钧,科学通报,1978年,23卷,1期,27页
  • 7郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,1995..
  • 8Guo Da-jun,Lakshmikantham V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Anal TMA,1987,11(5):623-632.
  • 9Guo Da-jun.Fixed point of mixed monotone operators with applications[J].Anal Appl,1988,31(2):215-224.
  • 10颜心力.对称压缩算子方程解的存在与唯一性定理及应用[J].科学通报,1990,35(10):733-736. 被引量:89

共引文献130

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部