摘要
本文首先针对KdV方程的Hamilton形式,建立一种比较容易验证的新型Poisson括号和无穷维Lie代数.其次,研究KdV方程的Hamilton形式的第一积分与新型Poison括号的关系,得到判定第一积分的充分必要条件.最后,构造KdV方程的第一积分.
For the Hamiltonian formulation of the Korteweg de Vires equation (KdVequation), C.S. Gardner defined a Poisson bracket. In this paper a brand new bracket is defined. It is easily verified that the new bracket possesses three properties of the Poisson bracket, bilinearity,skew symmetry, Jacobi identity. The new Poisson bracket has a close connection with C.S. Gardner's definition. In the framework of the new Poisson bracket, all the first integrals of the KdV equation constitute an infinite dimensional Lie algebra. Then the necessary and sufficient conditions for identifying the first integrals are obtained. Finally,the method for finding first integrals of KdV equation is investigated.
出处
《力学学报》
EI
CSCD
北大核心
1998年第3期307-313,共7页
Chinese Journal of Theoretical and Applied Mechanics
基金
国家自然科学基金
关键词
KDV方程
无穷维
分析力学
P-括号
李代数
KdV equation, Hamilton formulation,first integral, Poisson bracket, infinite dimensional Lie algebra