期刊文献+

基于随机分布估计的点云密度提取 被引量:11

Point Cloud Density Extraction Based on Stochastic Distribution Estimation
下载PDF
导出
摘要 针对目前密度提取方法提取的密度信息不能表现点云局部分布信息和分布随机性的缺陷,提出结合随机分布估计的密度提取方法。该方法采用分块计数法得到每个小分块的密度,结合点云总体的密集度得到一个能够反映点云局部积聚特征的参数,为判别点云分布的随机性、均匀性等提供较好的特征依据。 Density extraction method has difficulty in representing local distribution and its stochastic feature from the extracted density information. This paper proposes a solution to solve this problem, combing density method with stochastic distribution estimation. The method computes the density of each single small plot, and combines it with the overall density of the point cloud. A parameter is obtained, which can reflect the local aggregation feature. Tests show that this parameter can satisfactorily provide reliable data on estimating stochastic distribution and homogeneity of the point cloud.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第4期183-186,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60673092) 教育部科研基金资助重点项目(205059) 江苏省高校自然科学基金资助项目(07KJD520186)
关键词 离散点云 点云密度 点云随机分布估计 scattered point cloud point cloud density stochastic distribution estimation of point cloud
  • 相关文献

参考文献5

  • 1Theodoridis S, Koutroumbas K. Pattern Recognition[M]. 3rd ed. [S. l.]: China Machine Press, 2006.
  • 2Sotoodeh S. Outlier Detection in Laser Scanner Point Clouds[J]. [2008-08-10]. http://www.isprs.org/commission5/proceedings06/ paper/SOTO_653.pdf.
  • 3Klein J A, Zachmann G. Point Cloud Surfaces Using Geometric Proximity Graphs[J]. Computers & Graphics, 2004, 28(6): 839-850.
  • 4马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108
  • 5Kobler A, Pfeifer N, Ogrinc P, et al. Using Redundancy in Aerial Lidar Point Cloud to Generate DTM in Steep Forested Relief[C]// Proc. of Workshop on 3D Remote Sensing in Forestry. Vienna, Austria: [s. n.], 2006.

二级参考文献8

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.

共引文献107

同被引文献94

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部