期刊文献+

基于向量流场节点的图像分割算法 被引量:1

Image Segmentation Algorithm Based on Nodes of Vector Flow Field
下载PDF
导出
摘要 人工干预使蛇模型只能用于半自动的图像分割,该文在梯度向量流(GVF)蛇模型的基础上提出一种基于流场节点与最小路径方法的全自动图像分割算法。在图像的GVF场上检测出流场节点,以节点为种子,采用多标记快速扫描法获得一个初始分割,采用区域合并得到最终分割结果。实验结果证明了该算法的鲁棒性和有效性。 Snakes model is usually used for semi-automatic image segmentation for the existence of human interaction. In this paper, on the basis of Gradient Vector Flow(GVF) snakes, a fully automatic image segmentation algorithm based on the analysis of flow field and the minimal path method is proposed. It detects nodes of GVF field, sets the nodes as seeds, acquires an initial segmentation by multiple-label fast sweeping method, and uses a region merging to get the segmentation result. Experiments demonstrate the robustness and effectiveness of the algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第4期223-225,共3页 Computer Engineering
关键词 蛇模型 流场临界点 梯度向量流 多标记快速扫描法 snakes model critical points of flow field Gradient Vector Flow(GVF) multiple-label fast sweeping method
  • 相关文献

参考文献6

  • 1Xu Chenyang, Prince L. Snakes, Shapes, and Gradient Vector Flow[J]. IEEE Transactions on Image Processing, 1998, 7(3): 359-369.
  • 2Yu Z, Bajaj C. Normalized Gradient Vector Diffusion and Image Segmentation[C]//Proc. of the 7th European Conference on Computer Vision. Heidelberg, Germany: Springer-Verlag, 2002: 517-530.
  • 3He Yuan, Luo Yupin, Hu Dongcheng. Semi-automatic Initialization of Gradient Vector Flow Snakes[J]. Journal of Electronic Imaging, 2006, 15(4): 43006-43008.
  • 4Cohen L, Kimmel R. Global Minimum for Active Contour Models: A Minimal Path Approach[J]. International Journal of Computer Vision, 1997, 24(1): 57-78.
  • 5Zhao Hongkai. Fast Sweeping Method for Eikonal Equations[J]. Mathematics of Computation, 2005, (74): 603-627.
  • 6Vincent L, Sollie E Watershed in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部