期刊文献+

文本聚类在大学英语作文自动评分中应用 被引量:10

Cluster analysis of college English writing in automated essay scoring
下载PDF
导出
摘要 面向大学英语写作教学的自动作文评分要求评分方法具有针对非特定作文题目的通用性。在作文内容评价方面,文本聚类能够把作文按内容的相似程度聚集到一起,从而形成一棵内密外疏的聚类树。位于聚类树外围的少数与其它作文内容差异较大,即可能跑题的作文可以反馈给教师进行人工判断,从而花费较少的人力即可做出较准确的作文内容评价。实验表明,通过设置合理的相似度阈值,该方法能够有效识别跑题作文。 The automated essay scoring for the teaching of college English writing requires that the scoring method should have the feature of generality,namely,without pertinency of specific subjects.In the aspect of content evaluation,document clustering can put eassys together according to the similarity of their contents to form a clustering tree which has a higher similarity in the core than in the peripheral area of the tree.A few essays that locate in the peripheral area are quite different from most others in content.These essays are possibly off the topic and will be submitted to teachers for further examination. By this way,eassy contents can be evaluated accurately with only minor labor expense.Experiment shows that this method can identify essays off the topic effectively with a reasonable threshold value of content similarity.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第6期145-148,共4页 Computer Engineering and Applications
基金 国家自然科学基金~~
关键词 文本聚类 自动作文评分 大学英语 写作教学 document clustering automated essay scoring college English writing teaching
  • 相关文献

参考文献12

  • 1文秋芳.“作文内容”的构念效度研究——运用结构方程模型软件AMOS 5的尝试[J].外语研究,2007,24(3):66-71. 被引量:44
  • 2葛诗利,陈潇潇.国外自动作文评分技术研究[J].外语电化教学,2007(5):25-29. 被引量:35
  • 3曹亦薇,杨晨.使用潜语义分析的汉语作文自动评分研究[J].考试研究,2007,3(1):63-71. 被引量:24
  • 4Valenti S,Neri F,Cucchiarelli A.An overview of current research on automated essay grading[J].Journal of Information Technology Education, 2003 ( 2 ) : 319-330.
  • 5Page E B.Project essay grade:PEG[M]//Shermis M D,Burstein J. Automated essay scoring:A cross-disciplinary perspective.Mahwah, NJ: Lawrence Erlbaum Associates, 2003:43-54.
  • 6Landauer T K,Laham D,Foltz P W.Automated essay scoring and annotation of essays with the intelligent essay assessor[M]//Shermis M D,Burstein J.Automated Essay Scoring:A Cross Disciplinary Perspective.Mahwah,NJ:Lawrence Erlbaum Associates,2003:87-112.
  • 7Burstein J.The e-rater scoring engine:Automated essay scoring with natural language processing[M]//Shermis M D,Burstein J.Automated essay scoring:A cross-disciplinary perspective.Mahwah, NJ: Lawrence Erlbanm Associates, 2003 : 113-122.
  • 8Elliot S.IntelliMetric:from here to validity[M]//Shermis M D,Burstein J.Automated essay scoring:a cross disciplinary perspective.Mahwah, NJ:Lawrence Erlbaum Associates,2003:71-86.
  • 9Rudner L M,Liang T.Automated essay scoring using Bayes' theorem[J].The Journal of Technology,Learning and Assessment,2002 (2):3-21.
  • 10Kukich K.Beyond automated essay scoring[C]//Hearst M A.The debate on automated essay grading,2000(5):27-31.

二级参考文献32

共引文献103

同被引文献119

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部