期刊文献+

熔融还原法镍渣炼铁的热力学与动力学 被引量:27

Thermodynamic and kinetic in recovery of iron from nickel residue
原文传递
导出
摘要 利用熔融还原法进行了闪速炉水淬镍渣提铁的实验研究,探讨了熔渣二元碱度、反应温度和反应时间对提铁效果的影响.XRD测试结果表明水淬镍渣由正硅酸铁FeO.SiO2和玻璃态物质组成.镍渣中的氧化铁主要以FeO.SiO2的形式存在,通过常规的选矿方法很难实现铁氧化物的富集,故采用熔融还原方法进行镍渣提铁实验.实验结果表明增加配合料中CaO的加入量、提高反应温度以及延长熔制时间都能不同程度地提高镍渣中铁的还原率.通过比较1450~1600℃范围内各反应温度下不同类型还原反应的Gibbs自由能,镍渣熔融还原过程的主要反应形式为(FeO)+C(S)→[Fe]+CO.本实验确定的最佳配方组成为:镍渣100g、CaO34.7g、CaF24.04g和焦炭8.5g;最佳反应条件为1500℃熔制180min.以上条件下的渣铁分离效果较好,铁还原率达到96.32%. A study of extracting iron from nickel residue was done by smelting reduction method. The experiments were conducted to investigate the effect of slag basicity, melting time and temperature on the iron recovery ratio. XRD analysis indicates that the nickel residue is composed of FeSiO3 and glassy silicates, so it is impossible to reach the target of FeO content by regular ore-dressing method except by smelting reduction method. Experimental results show that the recovery ratio of iron increases with increasing the content of CaO added, melting temperature and time. The key reduction reaction is firmed as (FeO) + C(s) → [Fe] + CO↑ by comparing Gibbs free energies at different temperatures from 1450 to 1600 ℃ . The batch of nickel residue 100 g, CaO 34.7 g, CaF2 4.04 g and coke 8.5 g was the best formula in this study, and it was indicated that after melting at 1500 ℃ for 180 min, the slag and iron were well separated and the recovery ratio was up to 96.32 % for this batch.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2009年第2期163-168,共6页 Journal of University of Science and Technology Beijing
关键词 炉渣碱度 熔融还原 镍渣 还原率 slag basicity melting reduction nickel residue recovery ratio
  • 相关文献

参考文献11

  • 1白彦贵,朱果灵,张柏汀.金川提镍弃渣提铁基础研究[J].钢铁研究学报,1994,6(S1):65-72. 被引量:15
  • 2Gupta S K, Tandon J K, Gupta S S. Innovative steelmaking technology through Corex process at Jindal Vijayanagar Steel Limited. J Mines Met Fuels, 2003, 51(4) : 164
  • 3Goldsworthy T E, Dry R J, Bates C P, et al. Hismelt-the alternative technology for iron making. ,SEAISI Q, 2000, 29(2) : 43
  • 4Kumar P P, Garg L M, Gupta S S. Modelling of Corex process for optimization o{ operational parameters. Ironmaleing Steel-making, 2006, 33(1): 29
  • 5Gupta S K. Corex process utilisation of noncoking coal from India: Prospects and problems. J Mines Met Fuels, 2002, 50(7): 300
  • 6Lee C M, Fruehan R J. Phosphorus equilibrium between hot metal and slag. Ironmaking Steelmaking, 2005, 32(6) : 503
  • 7Gudenau H W, Fang J, Hirata T. Fluidized bed reduction as the prestep of smelting reduction. Steel Res, 1989, 60(3) : 138
  • 8Hardie G J, Taylor I F. Adaptation of injection technology for the Hismelt process//Proceedings of the Savard Lee International Symposium on Bath Smelting. Montreal, 1992:623
  • 9Pomp A, Zelenka S, Strecker N, et al. Viscoelastic material behavior: models and discretization used in process simulator DIOS. IEEE Trans Electron Devices, 2000, 47(10): 1999
  • 10吴铿,张二华,储少军,陈春元,李洪民,郭映波.熔融还原合成渣中碳还原Fe_2O_3的发泡特性参数[J].北京科技大学学报,2001,23(3):204-207. 被引量:3

二级参考文献10

  • 1吴铿 姚克虎 等.钢铁冶炼过程中内生气源发泡性能方程[J].中国稀土学报,2000,18:202-202.
  • 2Wu K,ISIJ Int,2000年,40卷,10期,954页
  • 3吴铿,中国稀土学报,2000年,18卷,增刊,202页
  • 4吴铿,泡沫冶金熔体的基础理论,2000年
  • 5Hong L,ISIJ Int,1998年,38卷,12期,1339页
  • 6Zhang Y,Metal Trans,1995年,26卷,803页
  • 7王大光 夏安武.含钒钢渣返回高炉条件下钒在渣铁相间的物理化学行为[J].化工冶金,1980,1(2):1-1.
  • 8王渭源,邹元爔.液态高炉型渣中MnO的活度及还原速率[J]金属学报,1963(01).
  • 9涂世伟,王大光,宣德茂.钒钛渣系与碳饱和铁水间的熔融还原研究[J].钢铁钒钛,1989,10(2):44-50. 被引量:4
  • 10戈文荪,张玉东,黎建.攀钢转炉提钒工艺的技术变革与展望[J].钢铁钒钛,2001,22(3):11-14. 被引量:6

共引文献16

同被引文献248

引证文献27

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部