期刊文献+

ULCB钢的奥氏体形变组织研究

Study on austenite deformed structure of ULCB steels
下载PDF
导出
摘要 采用单道次压缩实验方法,用THERMECHMASTORZ热模拟试验机在1100~850℃、变形速率2S^-1和变形量10%~50%的应变条件下,对900MPa级ULCB钢进行应力-应变曲线和奥氏体形变组织的试验。结果表明,在950℃以下的低温变形中不发生形变再结晶,随着变形量增大,先出现晶内形变带直到晶粒拉长变形。在1000℃以上的高温变形中,当变形量大于临界变形量时发生形变再结晶。随着变形量增大,奥氏体再结晶晶粒面积百分数依次增加,形变组织为部分或完全再结晶奥氏体,奥氏体晶粒平均截距的大小取决于形变再结晶奥氏体的晶粒尺寸和面积百分数。 Tests on the stress-strain curve and the austenite deformed structure of 900MPa ULCB steel have been carried out under the conditions of 1 100~850℃, deformation rate 2 s^-1 and strain rate 10%~50% at a thermo-simulator THERMECH- MASTOR-Z by means of single pass reduction experimental method. Results show that in the low temperature deformation of 950℃ below deformation reerystallization doesn' t occur and with the growth up of deformation the inner crystal deformation band appears initially and then the grain size is elongated till deformation. In the high temperature deformation of over 1000℃ the deformation recrystallization occurs when the deformation rate is greater than the critical deformation rate. With increase of the deformation rate the area percentage of the austenite recrystallized grains will increase in turn and the deformed structures are determined to be partial or complete recrystallized austenites and the size of the average sectional distance of the austenite grains depends upon the grain size of the deformed recrystallized austenite and its area percentage.
机构地区 武钢研究院
出处 《武钢技术》 CAS 2008年第6期34-37,共4页 Wisco Technology
关键词 ULCB钢 变形量 应力-应变曲线 再结晶组织 ULCB steels deformation rate stress strain curve recrystallized structures
  • 相关文献

参考文献3

二级参考文献12

  • 1周海涛,曾小勤,刘六法,王渠东,董杰,丁文江.热变形工艺参数对超低碳贝氏体钢转变行为和显微结构的影响[J].上海交通大学学报,2004,38(7):1091-1095. 被引量:6
  • 2McEvily A J, Davies R G, Magee C L, et al. Low carbon bainite steel[A]. Climax Molyddenum Company Symp[C]. Ann Arbor,MI, 1967. 179- 185.
  • 3Pickering F B. Effect of Mo on transition behavior in ultralow carbon steel [A]. Climax Molyddenum Company Symp [C]. Ann Arbor, MI, 1967. 109-115.
  • 4Yasuya O. Bainitic transformation in extremely low carbon steels [J]. The Iron and Steel Institute of Japan, 1995,35: 962- 968.
  • 5Krauss G, Thompson S W. Ferritic microstructures in continuously cooled low-and Ultralow-carbon steels [J]. The Iron and Steel Institute of Japan,1995,35:937-945.
  • 6Jung Y C, Ueno H, Ohtsubo H, et al. Effects of small amounts of B, Nb and Ti additions on nucleation and growth processes of intermediate transformation products in low carbon 3% Mn steels [J].The Iron and Steel Institute of Japan, 1995,35: 1001-1005.
  • 7Fujiwara K, Okaguchi S, Ohtani H. Effect of hot deformation on bainite structure in low carbon steels[J]. The Iron and Steel Institute of Japan, 1995,35:1006- 1012.
  • 8Jonas J J. Dynamic recrystallization-science curiosity or industrial tool[J]. Materials Science and Engineering, 1994,184A : 155- 170.
  • 9Bai D Q, Yue S, Maccagno T M, et al. Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steels[J]. The Iron and Steel Institute of Japan, 1998,38:371- 379.
  • 10Reed-Hill R E, Abbaschian R. Physical metallurgy principle[M]. 3rd ed. Boston: PWS-KENT Publishing Company, 1992. 612- 615.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部