期刊文献+

基于遗传粒子滤波器的运动目标实时跟踪 被引量:3

Real-time Moving Object Tracking Based on Genetic Particle Filter
下载PDF
导出
摘要 提出一种基于遗传粒子滤波器的运动目标跟踪算法,它将Boosting算法和遗传算法引入粒子滤波器,构建了遗传粒子滤波器.该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的重要信息,进行粒子权值的计算;并在跟踪过程中不断更新特征分类器,从而自适应地更新粒子的权值.为了提高算法的实时性,将遗传算法引入到粒子滤波器,在保证粒子滤波器精度的前提下,减少粒子数目,从而降低算法的运算时间.实验结果表明,所提算法可以根据背景信息的不同自适应地选择特征,在遮挡、形变及背景干扰等情况下,依然可以很好地对目标进行稳定的实时跟踪. This paper presents a moving object tracking algorithm based on genetic particle filter which is constructed with boosting algorithm and genetic algorithm. The object information and background information are used to construct feature classifiers, the output results of these classifiers are taken as the important observation information for the particle filter system and are used to calculate particle coefficients. These classifiers are updated during tracking so that the particle coefficients are updated adaptively. Genetic algorithm is introduced into the particle filters to improve the real-time ability of the algorithm. On the premise of guaranteeing the accuracy of the particle filters, the number of particles is considerably reduced and the processing time is decreased. The experiment result shows that the proposed algorithm can adaptively select features according to different background information, and can carry out stable and real-time tracking event if covering, deformation and background interferences exist in the environment.
出处 《信息与控制》 CSCD 北大核心 2008年第6期653-659,共7页 Information and Control
基金 国家自然科学基金资助项目(79816101) 湖南省自然科学基金资助项目(05JJ30121)
关键词 粒子滤波器 遗传算法 自适心特征选择 跟踪 BOOSTING算法 particle filter genetic algorithm adaptive feature selection tracking boosting algorithm
  • 相关文献

参考文献12

  • 1Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437.
  • 2Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. LEE Proceedings: Radar and Signal Processing, 1993, 140(2): 107-113.
  • 3Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.
  • 4叶剑波,夏利民.基于卡尔曼粒子滤波器的人眼跟踪[J].计算机工程,2006,32(3):196-198. 被引量:5
  • 5Chen H M, Ruan Y H. Joint target recognition and tracking using class specific features[A]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Cornputers[C]. Piscataway, NJ, USA: IEEE, 2004. 2101-2105.
  • 6Avidan S. Ensemble tracking[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Piscataway, NJ, USA: IEEE, 2005.494-501.
  • 7Collins R T, Liu Y. On-line selection of discriminative tracking features[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. Piscataway, NJ, USA: IEEE, 2003. 346-352.
  • 8Stern H, Efros B. Adaptive color space switching for face tracking in multi-colored lighting environments[A]. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition[C]. Piscataway, NJ, USA: IEEE, 2002. 249-254.
  • 9Avidan S. Support vector tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
  • 10Comaniciu D, Ramesh V, Meer E Real-time tracking of nonrigid objects using mean shift[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos, CA, USA: IEEE Computer Society, 2000. 142-149.

二级参考文献7

  • 1Kass M,Witkin A,Terzopoulos D.Snakes:Active Contour Models[J].Internation Journal of Computer Vision,1998,1(4):321-331.
  • 2Li P,Zhang T,Peece A E.Visual Contour Tracking Based on Particle Filters[J].Image and Vision Computing,2003,21(1):111-123.
  • 3Doucet A,Gordon N J,Krishnamurthy V.Particle Filters for State Estimation of Jump Markov Linear Systems[J].IEEE Trans.Signal Processing,2001,49(3):613-624.
  • 4Kitagawa G.Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models[J].Journal of Computational and Graphical Statistics,1996,5(1):1.
  • 5Liu J S,Chen R.Sequential Monte Carlo Methods for Dynamic System[J].Journal of the American Statistical Association,1998,93(443):1023-1044.
  • 6Doucet A.On Sequential Simulation Monte Carlo Sampling Methods for Bayessian Filtering[J].Statics and Computing,2000,10(3):197-208.
  • 7Chen H T,Liu T L.Trust-region Methods for Real-time Tracking[C].Proc.of Int.Conf.Computer Vision,2001-07:717-722.

共引文献4

同被引文献26

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部