期刊文献+

一类线性系统在11次扰动下的极限环分支(英文)

The Bifurcation of Limit Cycles for a Linear System with 11-degree Perturbation
下载PDF
导出
摘要 利用判定函数法研究了一类线性系统在11次扰动下的极限环分支,证明了这类系统至多产生5个极限环,并给出了正好产生5个极限环的条件,最后给出了一个能产生五个极限环的具体例子。 The bifurcation of limit cycles for a linear system with 11 - degree perturbations are investigated by using the detection function method. It is shown that there exist at most 5 limit cycles in this perturbed system . The conditions appearing just 5 limit cycles are given, and a concrete example is discussed.
作者 李艳梅
出处 《楚雄师范学院学报》 2008年第9期1-5,共5页 Journal of Chuxiong Normal University
关键词 极限环分支 判定函数 11次扰动 bifurcation of limit cycles detection function 11 - degree perturbations
  • 相关文献

参考文献1

二级参考文献7

  • 1HELENA E N,JAMES A Y.Dynamics: Numerical Explorations (Accompanying Computer Program Dynamics Coauthored by Eric J Kostelich)[]..1998
  • 2LIU Zheng-rong,QIAN Ti-fei LI Ji-bin.Detection function method and its application to perturbed quintic Hamiltonian system[].Chaos Solitons Fractals.2002
  • 3BLOWS T,LLOYD N.The number of small amplitude limit cycles of Lienard equa tions[].Math Proc Combridge PhilSoc.1984
  • 4YE Yan-qian.Theory of Limit Cycles[]..1984
  • 5LIU Zheng-rong,HU Bam-bi,LI Ji-bin.Bifurcation sets and distributions of limit cycles in a Hamiltonian system approaching the principal deformation of Z4-field[].International Journal of Bifurcation and Chaos.1995
  • 6LI Ji-bin,HUANG Qi-min.Bifurcations of limit cycles forming compound eyes in the cubic system[].Chinese Annals of Mathematics.1987
  • 7LIU Zheng-rong,YANG Zhi-yan,JIANG Tao.The same distribution of limit cycles in five perturbed cubic Hamiltonian systems[].International Joural of Bifurcation and Chaos.2003

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部