期刊文献+

具有饱和发生率的SIR模型的持久性和稳定性 被引量:6

Analysis of Permanence and Stability for SIR Model with Saturation Incidence
下载PDF
导出
摘要 研究了一类具有饱和发生率的虫媒传染病模型.确定了疾病是否流行的阈值R0.如果R0≤1,无病平衡点是全局渐近稳定的,疾病逐渐消失;如果R0>1,地方病平衡点是渐近稳定的,疾病将流行最终导致地方病产生. A SIR vector-born diseases model is obtained which determines whether the equilibrium is global asymptotically stable saturation incidence is studied disease is epidemic or not. If , and the disease will die out. The threshold value Ro ≤ 1, the disease-free Ro ≥ 1, the epidemic equilibrium is asymptotically stable, and the disease will be permanent and bring on the epidemic finally.
出处 《中北大学学报(自然科学版)》 EI CAS 2008年第6期479-485,共7页 Journal of North University of China(Natural Science Edition)
基金 山西省自然科学基金资助项目(2007011019)
关键词 SIR模型 饱和发生率 持久性 稳定性 SIR model saturation incidence permanence stability
  • 相关文献

同被引文献54

  • 1韩丽涛.一类食饵中存在疾病的捕食系统的SIS传染病模型[J].工程数学学报,2007,24(1):71-78. 被引量:8
  • 2Liu Xuanliang. Bifurcation of an eco-epidemiological model with a nonlinear incidence rate [J]. Applied Mathematics and Computation, 2011, 218(5): 2300.
  • 3Shi Xiangyun. Stability and Hopf bifurcation analysis of an eco-epidemic model Nonlinear Analysis Applications, 2011, 74(4) with a stage structure[J]. Theory, Methods : 1088-1106.
  • 4Chakraborty S, Pal S, Bairagi N. Dynamics of a ratio- dependent eco-epidemiological system with prey harvesting [J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1862-1877.
  • 5Chatterjee S, Chattopadhyay J. Role of migratory bird population in a simple eeo-epidemiologieal model[J]. Math. Comp. Model. Dys. Syst., 2007, 13(1): 99.
  • 6Zhang Yan, Gao Shujing, Liu Yujiang. Analysis of a nonautonomous model for migratory birds with saturation incidence rate [J]. Commun Nonlinear Sci Numer Simulat, 2012, 17: 1659-1672.
  • 7Arditi R. Variation in plankton densities among lakes: A case for ratio-dependent predation models [J]. Am. Nat., 1991, 138: 1287-1296.
  • 8Teng Zhidong. Permanence and asymptotic behavior of N-species nonautonomous Lotka-Volterra competitive systems E J3. Comput. Math. Appl., 2000, 39: 107-116.
  • 9Zhang Tai|ei. On a nonautonomous SEIRS model in epidemiology[J]. BMB, 2007, 69: 2537-2559.
  • 10Feng Xiaomei, Teng Zhidong, Zhang Long. The permanence for nonautonomous n-species Lotka Voherra competitive systems with feedback controls [J]. Rocky Mountain J. Math., 2008, 38: 1355.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部