期刊文献+

应用控制系统设计工具箱PIMCSD求解卫星编队重构问题 被引量:1

APPLYING CONTROL SYSTEM DESIGN TOOLBOX—PIMCSD IN SOLVING RECONFIGURATION OF SATELLITES FORMATION
下载PDF
导出
摘要 利用线性时变系统终端约束最优控制方法,为椭圆轨道卫星编队的队形重构控制问题设计了均衡耗能最优控制器。由于描述椭圆轨道卫星编队相对运动的Lawden方程是时变方程,给卫星编队重构的最优控制器设计带来一定的困难。利用基于精细积分算法的控制系统设计工具箱—PIMCSD进行系统设计,求解卫星编队重构所需的时变最优反馈控制律和前馈控制律,最后给出了由三颗卫星组成的编队队形重构控制仿真计算结果。 By using optimal terminal constraint technique for linear time-varying system, an optimal energy consumption-balanced controller is designed for formation reconfiguration controlling issue of the satellites formation flying on elliptic orbitsNumerical computation is somewhat complex in designing such a control system due to Lawden equation,which describes the relative motion of satellites formation on elliptic orbit, is a time-varying equationTo overcome it ,the precise integration method-based control system designing (PIMCSD) toolbox is employed to devise the system, and is used to solve the optimal time-varying feed-forward and feed-back control laws required in the recoNfiguration of satellites formationAt last the simulated computing result of recontiguration control for a formation consisted of three satellites is presented.
出处 《计算机应用与软件》 CSCD 2009年第2期4-7,41,共5页 Computer Applications and Software
基金 高等学校博士点基金(20070141067)资助
关键词 卫星编队飞行 编队重构 最优控制 控制系统计算机辅助设计 Satellites formation flying. Formation reconfiguration Optimal control Computer aided control system design
  • 相关文献

参考文献9

  • 1Tilerson M, Inalhan G, How J P. Coordination and control of distributed spacecraft systems using convex optimization techniques, IntJRobust and Nonlinear Control ,2002,12 : 207 - 242.
  • 2Sultan C, Seereram S, Mehra R K. Energy suboptimal collision-free reconfiguration for spacecraft formation flying,Journal of Guidance Control and Dynamics,2006,29( 1 ) :190 - 192.
  • 3Park C, Guibout V, Scheeres D J. Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions,Journal of Guidance, Control,and Dynamics,2006,29(2) : 321 -331.
  • 4Rahmarti A, Mesbahi M, Hadaegh Y. On balanced-energy formation flying maneuvers, Journal of Guidance Control and Dynamics, 2006,29 (6) : 1395 -1403.
  • 5Inalhan G, Tilerson M, How J P. Relative Dynamics and Control of Spacecraft formations in eccentric orbits,Journal of Guidance, Control, and Dynamics ,2002,25 ( 1 ) : 48 - 59.
  • 6谭述君,钟万勰.基于精细积分的(最优)控制系统设计程序包[J].计算机应用与软件,2007,24(9):165-169. 被引量:6
  • 7Bryson A E. Dynamic optimizationCalifomia: Addison Wesley, 1999.
  • 8Bryson A E. Applied Linear Optimal ControlCambridge: Cambridge University Press,2002.
  • 9谭述君,吴志刚,钟万勰.含终端等式约束LQ时变控制器设计的新方法.

二级参考文献15

  • 1Varga A.Numerical awareness in control.IEEE Control Systems Magazine,February,2004:14-17.
  • 2Van Huffel S,Sima V,Varga A.Sven Hammarling,Francois Delebecque.High-performance numerical software for control.IEEE Control Systems Magazine,February,2004:60-76.
  • 3Slowik M,Benner P,Sima V.Evaluation of the linear Matrix Equation Solvers in SLICOT.SLICOT Working Note,2004(1):1-34.
  • 4Bryson A E.Dynamic optimization.California:Addison Wesley,1999.
  • 5Bryson A E.Applied linear optimal control:examples and algorithms.Cambridge:Cambridge University Press,2002.
  • 6Kenney C S,Leipnik R B.Numerical Integration of the differential matrix Riccati equation.IEEE Trans.Auto.Contr,30(10):962-970.
  • 7Laub A J.A Schur method for solving algebraic Riccati equations.IEEE Trans.Auto.Contr,1979,24(6):913-921.
  • 8Arnold W F,III,Laub A J.Generalized eigenproplem algorithms and software for algebraic Riccati equations.Proc.IEEE,1984,72(12):1746-1754.
  • 9Rahmani A,Mesbahi M,Hadaegh F Y.On the optimal balanced-energy formation flying maneuvers.AIAA guidance,navigation and control conference and exhibit,(AIAA 2005-5836),San Francisco,California,August,2005:15-18.
  • 10Van Loan C F.Computing integrals involving the matrix exponential.IEEE Trans.Auto.Contr,1978,23(3):395-404.

共引文献5

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部