期刊文献+

基于Multi-Agent协作强化学习的分布式发电系统的研究 被引量:3

Research of Distributed Power Generation System Based on Multi-Agent Co-operation Strengthens Study
原文传递
导出
摘要 随着可再生能源技术的飞速发展,风光互补分布式发电系统以其经济性和可靠性得到了越来越广泛的应用。文中提出了一种基于Multi-Agent的以能量管理为主要特征的分布式风光互补发电系统,将联合动作学习(JAL)模式作为多Agent的协作策略,并结合强化学习技术描述了多Agent协作学习的过程。以一个风光互补发电系统为例进行仿真,实验结果证明了这种方法的有效性。 With the power system has a wider development application. of renewable This paper energy proposes technology, a distributed the distributed wind-PV wind-PV power system based on Multi-Agent, whose main character is energy management, and describes the multi-agent cooperative reinforcement learning process using the joint action learning pattern as the cooperative strategy. The experiment of a distributed wind-PV power system shows the efficiency.
出处 《能源研究与利用》 2009年第1期26-29,共4页 Energy Research & Utilization
基金 国家自然科学基金重点项目(60534040)
关键词 分布式发电 MULTI-AGENT 强化学习 联合动作学习 distributed power multi-agent reinforcement learning joint action learning
  • 相关文献

参考文献4

  • 1Stuart Russell,Peter Norvig.人工智能-一种现代方法(第二版)[M].北京:人民邮电出版社,2004.
  • 2MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 3Warkins C,Dayan P.Technic note:Q-Learning [J].Machine Learning, 1992,(8):279-292.
  • 4Claus C, Boutilier C. The Dynamics of Reinforcement Learning in Cooperative Multi-agent Systems[C].In:Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998:746-752.

共引文献46

同被引文献35

  • 1Rui WANG,Qiuye SUN,Yonghao GUI,Dazhong MA.Exponential-function-based droop control for islanded microgrids[J].Journal of Modern Power Systems and Clean Energy,2019,7(4):899-912. 被引量:4
  • 2吴捷,杨俊华.绿色能源与生态环境控制[J].控制理论与应用,2004,21(6):864-869. 被引量:24
  • 3王健,康龙云,曹秉刚.新能源分布式发电系统的能量互补控制研究[J].系统仿真学报,2005,17(6):1438-1440. 被引量:4
  • 4王健,康龙云,曹秉刚,王昆.新能源分布式发电系统的控制策略[J].太阳能学报,2006,27(7):704-708. 被引量:10
  • 5ZENG Jun, NGAN H W, LlU Jun-feng. Colored petri nets modeling of multi-agent system for energy management in dis- tributed renewable energy generation system[ C ]. 8th Interna- tional Conference on Advances in Power System Control, Op- eration and Management, Hong Kong, 2009, 11.
  • 6BELHFEMINE F, CA1RE G, GREENWOOD D. Developing muhi-agent systems with JADE[ M]. John Wiley & Sons, Ltd.
  • 7N.M. MuhamadRazali, A.H. Hashim.A Profit-based Optimal Generation Scheduling of a Microgrid[A].The 4th International Power Engineering and Optimization Conference[C]. Selangor,2010: 232-237.
  • 8A.F. Mohamed,N.H. Koivo. Microgrid Online Management andBalancing Using Multiobjective Optimization[A].Power Tech. Lausanne: IEEE[C].2007:639-644.
  • 9A.F. Mohamed,N.H.Koivo.System Modelling and Online OptimalManagement of Microgrid using Multiobjective optimization[A].International Conference on Clean Electrical Power[C]. 2007:148 - 153.
  • 10S. Conti,S,A.Rizzo.Optimal Control to Minimize Operating Costs and Emissionsof MV Autonomous Micro-grids with RenewableEnergySources[A].InternationalConference on Clean Electrical Power[C].2009:634-639.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部