期刊文献+

基于连续蚁群算法和小波支持向量机的位移反分析 被引量:2

Displacement back analysis based on continuous ant colony algorithm and wavelet support vector machines
下载PDF
导出
摘要 提出一种基于连续蚁群算法和小波支持向量机的位移反分析模型。一方面利用具有良好时域、频域分辨能力和非线性学习功能的小波支持向量机建立反演参数和位移之间的非线性关系,避免了大量的数值计算,提高了预测精度;另一方面利用全局优化的连续蚁群算法代替传统的优化算法,避免优化过程中目标函数陷入局部最优,提高了反演的精度。应用该模型对三峡工程永久船闸高边坡4种介质弹性模量进行位移反分析,并利用反演所得参数进行监测点位移预测,计算值与监测值吻合较好,表明该方法适合解决具有非线性和不确定特性的岩土工程问题,在位移反分析中具有良好的实际应用价值。 A displacement back analysis model is proposed by combining the continuous ant colony algorithm (CACA) and wavelet support vector machines (WSVM). On the one hand, the model establishes the nonlinear relationship of inversion parameters and displacement, minimizing numerical computation and improving forecasting accuracy with the use of WSVM, which has a good time domain, a good frequency domain, good resolving power, and nonlinear self-study capability. On the other hand, the global optimization performance of CACA rather than that of traditional optimization methods is used in the model, thereby avoiding the objective function trap in the local optimum and improving the inversion precision. The model is applied to displacement back analysis of the elastic modulus of four mediums of the Three Gorges Project (TGP) permanent lock high dope. The inversion parameters are used to predict the displacement of the monitoring points. The calculated displacement agrees with the detected displacement, indicating that the model is suitable for solving geotechnical engineering problems with nonlinearity and uncertainty. It has practical value in displacement back analysis.
出处 《水利水电科技进展》 CSCD 北大核心 2009年第1期16-19,共4页 Advances in Science and Technology of Water Resources
基金 国家自然科学重点基金(50539110) 国家重点基础研究发展计划(973项目)(2002CB412707) "十一五"国家科技支撑计划(2006BAB04A02)
关键词 小波支持向量机 连续蚁群算法 位移反分析 弹性模量 wavelet support vector machines continuous ant colony algorithm displacement back analysis elastic modulus
  • 相关文献

参考文献12

二级参考文献74

共引文献327

同被引文献24

  • 1丁德馨,张志军.位移反分析的自适应神经模糊推理方法[J].岩石力学与工程学报,2004,23(18):3087-3092. 被引量:20
  • 2湖南省某矿山工程部.湖南省某矿山采空区调查报告[R].2006.
  • 3MOHAMMAD N, REDDISH D J. The relation between in situ and laboratory rock properties used in numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 289-297.
  • 4YANG Zhi-fa, LEE C F, WANG Si-jing. Three-dimensional back-analysis of displacements in exploration adits-principles and application[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(3): 525-533.
  • 5YANG Y W, SOH C K. Fuzzy logic integrated genetic programming for optimization and design[J]. Journal of Computing in Civil Engineering, ASCE, 2000, 14(4): 249-254.
  • 6VAPNIK V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995.
  • 7HOKE E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1997, 34(8): 1165-1186.
  • 8SU Huaizhi, HU Jiang, WU Zhongru. A Study of Safety Evaluation and Early-warning Method for Dam Global Behavior[J]. Structural Health Moni- toring,2012,11(3) :269-279.
  • 9Huaizhi Su, Zhongru Wu, Zhiping Wen. Identifica- tion Model for Dam Behavior Based on Wavelet Network[J]. Computer-Aided Civil and Infrastruc- ture Engineering, 2007,22 (6) : 438-448.
  • 10Napolitano M R, Windon D A, Casanova J L, et al. Kalman Filters and Neural-network Schemes for Sensor Validation in Flight Control Systems. IEEE Transactions on Control Systems Technology, 1998,6(5) :596-611.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部