期刊文献+

矩形变截面梁横向振动自振频率的传递函数渐近解法 被引量:4

The Asymptotic Method For Free Vibration Analysis of Wedge Beam by Distributed Transfer Function Method
下载PDF
导出
摘要 分析具有固定宽度而高度成线性分布的楔形梁。引入状态变量将模形梁的自由振动控制方程及边界方程写成状态空间形式。定义小参数,并利用摄动方法,得到常系数微分方程,从而得到问题的摄动解。最后给出了一些数值算例,验证了方法的可行性。 The free vibration of the wedge beam with constant width and linear variab1e depth is presented in this paper. The linear partial differential equation and the inhomogeneous boundary conditions have been cast into a state space form in the Laplace domain. Choosing the sma1l parameter B as a perturbation parameter, the asymptotic solutions of the free vibration frequency and eigenfunction are determined by the state space technique and the transfer function method. Numerical examples are provided to illustrate the efficiency of the method and the results are compared with that of the finite element method.
出处 《强度与环境》 1998年第1期24-31,共8页 Structure & Environment Engineering
基金 国家自然科学基金!19572027 国家教委归国留学人员基金 国防科技大学校预研基金
关键词 横向振动 自由振动频率 传递函数 摄动 Beam, ^+Transverse vibration, Free vibration, Transfer function, Perturbation theory
  • 相关文献

参考文献6

  • 1叶开沅 郑书英.非均匀弹性基础上的非均匀变截面梁的稳定性和自由振动问题[J].兰州大学学报:自然科学版,1983,19:37-57.
  • 2S Y Lee and H Y Ke. Free vibration of a non-uniform beam with general elastically restrained boundary conditions. Journal of Sound and Vibration (1990) 136(3),425-437.
  • 3C A Tan and W Kuang. Ditributed transfer function analysis of cone and wedge beams. Journal of Sound and Vibration (1994) 170(4),557-566.
  • 4B Yang. Ditributed transfer function analysis of complex distributed parameter systems, Journal of Applied Mechanics, Vol. 61,1994,84-92.
  • 5Yang and C A Tan. Transfer functions of one-dimensional distributed parameter systems. Journal of Applied Mechanics, Vol. 59. 1992,1009-1014.
  • 6Jianping Zhou and Bingen Yang, Distributed transfer function methods for analysis of cylindrical shells. AIAA Journal, Vol. 33,No. 9,1995,1698-1708.

同被引文献32

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部