摘要
本文讨论了Orr-Sommerfeld方程的各种Chebyshev谱离散方法。数值证明了Chebyshev配置法离散Orr-Sommerfeld方程没有伪谱,并以此构造了适于任意平面平行速度剖面情形,对时间和时空稳定性模式一致有效的无伪谱的谱离散方法。其中,对时空稳定性问题本文给出了一种新的迭代法可以快速有效地求出复频率的鞍点。对平面Poiseuille流、Blasius边界层流和Gauss模型尾迹三种典型速度剖面给出了相应的算例,结果令人满意。
In this paper, a discussion about various Chebyshev spectral methods for the Orr-Sommer-feld equation is given. Firstly it is proved numerically that no spurious mode may be yield by the Chebyshev collocation method; then an uniformly available Chebyshev colocation method free from the spurious mode is developed for temporal and temporal-spatial stability problem of an arbitrary plane velocity profile. For the temporal-spatial stability problem, a new iterative method for solving the saddle point of the complex frequency is then proposed. Examples for the plane Poiseuille flow, the Blasius veloctiy profile and the Gaussian model wake profile give very good results.
出处
《上海力学》
CSCD
1998年第1期1-8,共8页
Chinese Quarterly Mechanics
基金
国家自然科学基金