期刊文献+

基于改进Normal Shrink阈值估计的曲波图像降噪

Improved Normal Shrink Denoising Algorithm Based on Fast Discrete Curvelet Transform
下载PDF
导出
摘要 结合Curvelet变换的特点改进Normal Shrink阈值算法的尺度参数,提出一种改进的自适应阈值降噪方法。该方法发挥了Curvelet变换对曲线边缘的稀疏表示的特性优点。实验结果表明在图像降噪方面与传统的小波收缩阈值方法相比不但有更好的视觉效果,而且峰值信噪比值也更高。 In this paper, an improved adaptive threshold denoising method based on curvelet transform is proposed. In particular, the scale parameter of Normal Shrink is modified to adapt to the characters of eurvelet transform. As a resuit, algorithm takes the advantage of the features that curvelet represent the curves and edges sparely. Experimental resuits indicate that the proposed method can achieve better visual quality and higher PSNR than traditional shrinking threshold methods of wavelet.
作者 陈东方 何亮
出处 《计算机与数字工程》 2009年第2期129-131,138,共4页 Computer & Digital Engineering
关键词 多尺度分析 图像降噪 CURVELET变换 小波 multi-scale geometry analysis, image denoising, curvelet transform, wavelet
  • 相关文献

参考文献14

  • 1Boubchir L., Fadili J. M. Multivariate statistical modeling of images with the curvelet transform[J]. Signal Processing and Its Applications, 2005, (2): 747-750
  • 2E. Candes and D. Donoho. Curvelets: A surprisingly effective nonadaptive representation of objects with edges [J]. Curves and Surface, Vanderbilt University Press, Nashville, TN, 1999:123-143
  • 3E. J. Candes and D. L. Donoho. Ridgelets: the key to higher dimensional intermittency Phil. Trans[J]. R. Soc. Lond. A. 1999, 357:2495-2509
  • 4E. Candes. Redgelets: Theory and Applications [D]. Ph. D. Thesis, Department of Statistics, Stanford University, 1998
  • 5D.L. Donoho. Orthonormal Ridgelets and Linear Singularityes[J]. SIAM J. Math Anal. 2000,31(5) : 1062-1099
  • 6E. J. Candes. Harmonic analysis of neural networks [J]. Applied and Computational Harmonic Analysis 1999, 6:197-218
  • 7Lakhwinder Kaur, Savita Gupta, R. C. Chauhan. Image Denoising using Wavelet Thresholding[C]. ICVGIP2002
  • 8Starrek J. L. , Candes E. J. , Donoho D. L.. The Curvelet transform for image Denoising[J]. IEEE Transaction on Image Processing, 2002, 11(6):670-684
  • 9Starck J. L, Murtagh F. , Candes E. J, Donoho D. L. Gray and Color Image Contrast Enhancement by the Curvelet Transform[J]. IEEE Trans. Image Processing, 2003, (12) :706-716
  • 10E. J. Candes, L. Demanet, D. L. Donohoetal. Fast Discrete Curvelet Transform [D]. Applied and Computational Mathematics. California Institute of Technology, 2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部