期刊文献+

La_(0.8-x)Ce_xMg_(0.2)Ni_(3.5)(x=0~0.20)贮氢合金电极的低温放电性能 被引量:2

Electrochemical Properties of La_(0.8-x)Ce_xMg_(0.2)Ni_(3.5)(x=0~0.20) Hydrogen Storage Alloy Electrode at 233 K
下载PDF
导出
摘要 用冷坩埚磁悬浮熔炼炉制备La0.8-xCexMg0.2Ni3.5(x=0,0.05,0.10,0.15,0.20)贮氢电极合金,采用X射线衍射、三电极体系系统研究合金的微观结构和电化学性能。研究表明:合金为多相结构,主相均为Ce2Ni7型六方相,还包括CaCu5型六方相、PuNi3型菱方相;P-C-T曲线显示,随着Ce含量的增加,合金放氢平台区域变窄,平台压力升高。合金中各组成相单胞体积的减小是其主要原因。随着Ce含量的增加,合金常温最大放电容量逐渐减小并且循环稳定性有一定改善;低温最大放电容量则先增大后减小,合金的低温高倍率放电性能以及交换电流密度均随Ce含量的增加而增加,但氢扩散系数随着Ce含量的增加而减小。 In this paper, the effects of cerium content on the structural and electrochemical properties of the La0.8-xCexMg0.2Ni3.5(x=0~0.20) hydrogen storage alloys have been studied systematically. XRD analyses show that all these alloys consist of hexagonal Ce2Ni7-type main-phase, hexagonal CaCus-type phase, and rhombohedral PuNi3-type phase. The P-C isotherms curves show that the plateau pressure of the hydrogen desorption increases gradually and the plateau region becomes narrower with increasing the Ce content in the alloys. It is also found that with increasing the Ce content, the discharge capacity at 303 K decreases and the cycling life can be gradually improved, but the discharge capacity at 233 K increases firstly and then decreases. The high rate dischargeability (HRD) and the exchange current density 10 increase but the hydrogen diffusion coefficient D of the alloy electrodes decreases with the increase of Ce content at 233 K. These imply that the charge-transfer reaction on the surface of alloy electrodes is the rate-determining step at 233 K.
机构地区 四川大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第2期237-241,共5页 Rare Metal Materials and Engineering
关键词 A2B7型贮氢电极合金 相结构 低温电化学性能 A2B7-type hydrogen storage electrode alloys phase structure low-temperature electrochemical properties
  • 相关文献

参考文献18

  • 1Ye S H et al. J Alloy Compd[J], 1999, 292(12) : 191
  • 2Hong K. J Alloy Compd[J], 2001, 321(2): 307
  • 3Hirohisa U et al. International Journal of Hydrogen Energy[J], 1999, 27(9): 871
  • 4LeiYongquan(雷永泉) et al.New Energy Materials(新能源材料)[M].Tianjin: Tianjin University Press, 2000:52
  • 5Sakai Let al. Journal of the Electrochemical Society[J], 1990, 137:795
  • 6Kohno Yoshida H et al. Journal of Alloys and Compounds[J], 2000, 311 : L5
  • 7刘永锋,潘洪革,高明霞,朱云峰,葛红卫,李寿权,雷永泉.稀土镁基贮氢电极合金的结构与电化学性能研究[J].金属学报,2003,39(6):666-672. 被引量:38
  • 8刘丽琴,唐睿,柳永宁.稀土元素对La_(0.8)Mg_(0.2)Ni_(2.8)Co_(0.6)储氢合金性能的影响[J].中国有色金属学报,2003,13(4):871-875. 被引量:34
  • 9Nelson R F. dPower Sources[J], 2000, 91 : 2
  • 10Erbacher K. JPower Sources[J], 1999, 80:265

二级参考文献25

  • 1邓凌峰,李新海,徐洪辉,陶芝勇,胡传跃.低钴AB_5型贮氢合金的制备及电化学性能[J].中国有色金属学报,2001,11(z1):114-117. 被引量:12
  • 2Willems J J G, Buschow K H J. J Less-Common Met, 1987; 129:13
  • 3Pan H G, Zhu Y F, Gao M X, Wang Q D. J Electrochem Soc, 2002; 149:829
  • 4Lomness J K, Hampton M D, Giannuzzi L A. Int J Hydrogen Energy, 2002; 27:915
  • 5Slattery D K. Int J Hydrogen Energy, 1995; 20:971
  • 6Gross K J, Spatz P. Auttl A, Schlapbach L. J Alloys Compd, 1997; 261:276
  • 7Kadir K, Sakai T, Uehara I. J Alloys Compd, 1997; 257: 115
  • 8Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L. J Alloys Compd, 1999; 284:145
  • 9Kadir K, Sakai T, Uehara I. J Alloys Compd, 1999; 287: 264
  • 10Kadir K, Sakai T, Uehara I. J Alloys Compd, 2000; 302:112

共引文献74

同被引文献23

  • 1白珍辉,尉海军,蒋利军,朱磊,简旭宇.Nd元素部分取代对La_(0.8-x)Nd_xMg_(0.2)Ni_(3.3)Co_(0.5)(x=0~0.15)储氢合金结构和电化学性能影响[J].稀有金属,2010,34(4):546-551. 被引量:6
  • 2蒋卫卿,周正诚,黄春玉,蓝志强,郭进.铸态及退火La_(1.9)Ti_(0.1)MgNi_9合金的贮氢性能(英文)[J].稀有金属材料与工程,2010,39(11):1888-1892. 被引量:1
  • 3Liu Y F,Cao Y H, Huang L, Gao M X,Pan H G. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materi-als for Ni/MH batteries [ J ]. Journal of Alloys and Compounds,2011, 509(1) : 675.
  • 4Kadir K, Sakai T, Uehara I. Structural investigation and hydro-gen storage capacity of LaMg2 Ni9 and ( 65 Coq 35 ) ( MgL32Ca0.68)Ni9 of the AB2C9 type structure [ J]. Journal of Alloysand Compounds, 2000 , 302(1-2) : 112.
  • 5Kohno T,Yoshida H,Kawashima F,Inaba T, Sakai I,Yamamo-to M, Kanda M. Hydrogen storage properties of new ternary sys-tem alloys: La2MgNi9, La5Mg2Ni23,La3 MgNi14 [ J]. Journal ofAlloys and Compounds, 2000, 311(2): L5.
  • 6Guo J, Zhang R, Jiang W Q, Li G X, Wei W L. The effect ofsubstitution Al for Ni on the electrochemical properties of LaQ 7Mgo.3Ni2.75_,AlxCo0 75 hydrogen storage alloys [J]. Journal ofAlloys and Compounds, 2007 , 429 (1 -2) : 348.
  • 7Zhao Y, Gao M X,Liu Y F,Huang L’ Pan H G. The correla-tive effects of Al and Co on the structure and electrochemicalproperties of a La-Mg-Ni-based hydrogen storage electrode alloy[J]. Journal of Alloys and Compounds, 2010, 496 : 454.
  • 8Li Y, Han D, HaiiSM, Zhu X L, Hu L, Zhang Z, Liu Y W.Effect of rare earth elements on electrochemical properties of La-Mg-Ni-based hydrogen storage alloys [ J]. International Journal ofHydrogen Energy, 2009, 34(3) : 1399.
  • 9Pan H G, Ma S, Shen J,Tan J, Deng J, Gao M X. Effect ofthe substitution of PR for LA on the microstructure and electro-chemical properties of 7_x PrxMgo 3 Ni2 45 Co0 75 Miiq j AIq 2(^=0.0-0.3) hydrogen storage electrode alloys [J]. Interna-tional Journal of Hydrogen Energy, 2007, 32( 14) : 2949.
  • 10Tang R, Wei X D, Liu YN, ZhuCC, Zhu J W, Yu G. Effectof the Sm content on the structure and electrochemical propertiesof Lal 3Sn^CaMgo 7Ni9(x = 0 —0.3) hydrogen storage alloys[J]. Journal of Power Sources, 2006,155(2) : 456.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部