期刊文献+

First-principles Study of Electron Transport Through Oligoacenes

First-principles Study of Electron Transport Through Oligoacenes
下载PDF
导出
摘要 The electronic transport properties of oligoacenes sandwiched between two Au(111) surfaces with serial and parrallel configurations were investigeted by using a fully self-consistent nonequilibrium Green's function method combined with density functional calculations. This theoretical results show that the conductivity of oligoacenes with both sandwiched configurations at low bias voltage is mainly determined by the tail of the transmission peak from the perturbed highest occupied molecular orbital. When the molecular length increases, the zero-bias voltage conductance G(0) of oligoacenes with serial configuration neither follows Magoga's exponential law nor displays the even-odd oscillation effect, while the G(O) of the oligoacenes sandwiched with parallel configuration monotonically increases. The reduction of energy gaps, the alignment of the Fermi level, and the spatial distribution of the perturbed molecular orbitals are used to self-consistently explore the transport mechanism through oligoacenes.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期7-12,共6页 化学物理学报(英文)
基金 ACKNOWLEDGMENTS We thank Professor Wan-zhen Liang for helpful discussion. This work was completed in her group. This work was supported by the National Natural Science Foundation of China (No.20773112 and No.10674121), the National Key Basic Research Program (No.2006CB922000), the Science and Technological Fund of Anhui Province for Outstanding Youth (No.08040106833), the USTC-HP HPC project, and the SCCAS and Shanghai Supercomputer Center.
关键词 Transport property Oligoacene Zero-bias voltage conductance First-principles calculation 电子 非平衡格林函数 计算方法 传输峰值 分子轨道
  • 相关文献

参考文献40

  • 1M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
  • 2B. Q. Xu and N. J. Tao, Science 301, 1221 (2003).
  • 3X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, and S. M. Lindsay, Science 294, 571 (2001).
  • 4S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1999)
  • 5Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).
  • 6H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. MeEuen, Nature 407, 57 (2000).
  • 7S. E. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Bredas, N. Stuhr-Hansen, and T. BjSrnholm, Nature 425, 698 (2003).
  • 8B. Kim, J. M. Beebe, Y. Jun, X. Y. Zhu, and C. D. Frisbie, J. Am. Chem. Soc. 128, 4970 (2006).
  • 9J. R. Quinn, F. W. Foss Jr., L. Venkataraman, M. S. Hybertsen, and R. Breslow, J. Am. Chem. Soc. 129, 6714 (2007).
  • 10W. P. Hu, J. Jiang, H. Nakashima, Y. Luo, Y. Kashimura, K. Q. Chen, Z. Shuai, K. Furukawa, W.Lu, Y. Q. Liu, D. B. Zhu, and K. Torimitsu, Phys. Rev. Lett. 96, 027801 (2006)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部