期刊文献+

Bass模型参数估计方法研究综述 被引量:5

Summarization of Research on Bass Model Parameter Estimation Approach
下载PDF
导出
摘要 详细介绍了新产品扩散Bass模型及其各种参数估计方法。模型的参数估计是影响模型准确性的一个重要方面,不同的参数估计方法,会使模型拟合结果相差很大,本文在对以往Bass模型参数估计方法进行分析评述的基础上,介绍了一种新的模型参数估计方法—蚁群算法,通过比较分析,认为蚁群算法将是一种更好的Bass模型参数估计方法。 The Bass model of new product diffusion and its various parameter estimation approaches is introduced tin detail. The parameter estimation for a model is one of the important factors for the accuracy of the forecasting of a model. Different parameter estimation approaches will lead to totally different model estimation results. Based on the analysis and summarization of the previous parameter estimation approaches of Bass model, a new parameter estimation approach of Bass model, i. e. ant colony optimization ( ACO ) is proposed. Through comparison and analysis, a conclusion is drawn that ACO is a much better parameter estimation approach of Bass model.
机构地区 哈尔滨工业大学
出处 《航天控制》 CSCD 北大核心 2009年第1期104-108,共5页 Aerospace Control
基金 教育部高等学校博士学科点专项基金资助项目(20040213005)
关键词 BASS模型 参数估计 蚁群算法 Bass model Parameter estimation Ant colony optimization
  • 相关文献

参考文献4

  • 1Rajkumar V, Kumar V. A Genetic Algorithms Approach to Growth Phase Forecasting of Wireless Subscribers [ J ]. international Journal of Forecasting, 2002,18 : 625 -646.
  • 2Dorigo M, Stezle T. The Ant Colony Optimization Metaheuristic : Algorithms, Applications and Advances [ M ]. Handbook of Metaheuristics, Kluwer Academic Publishers, 2002.
  • 3彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 4Meuleau N, Dorigo M. Ant Colony Optimization and Stochastic Gradient Descent [ J ]. Artificial Life, 2002, 18 (2) :103 -121.

二级参考文献53

  • 1[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 2[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 3[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 4[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 5[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.
  • 6[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676.
  • 7[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476.
  • 8[18]Xiaohui Hu, Eberhart,R C.Adaptive particle swarm optimization:detection and response to dynamic systems[ A ]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 2002.2.1666 - 1670.
  • 9[19]M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1 ) :53 - 66.
  • 10[20]T Stutzle, H H Hoos. MAX MIN Ant system[ J]. Journal of Future Generation Computer Systems,2000,16:889 - 914.

共引文献78

同被引文献17

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部