摘要
详细介绍了新产品扩散Bass模型及其各种参数估计方法。模型的参数估计是影响模型准确性的一个重要方面,不同的参数估计方法,会使模型拟合结果相差很大,本文在对以往Bass模型参数估计方法进行分析评述的基础上,介绍了一种新的模型参数估计方法—蚁群算法,通过比较分析,认为蚁群算法将是一种更好的Bass模型参数估计方法。
The Bass model of new product diffusion and its various parameter estimation approaches is introduced tin detail. The parameter estimation for a model is one of the important factors for the accuracy of the forecasting of a model. Different parameter estimation approaches will lead to totally different model estimation results. Based on the analysis and summarization of the previous parameter estimation approaches of Bass model, a new parameter estimation approach of Bass model, i. e. ant colony optimization ( ACO ) is proposed. Through comparison and analysis, a conclusion is drawn that ACO is a much better parameter estimation approach of Bass model.
出处
《航天控制》
CSCD
北大核心
2009年第1期104-108,共5页
Aerospace Control
基金
教育部高等学校博士学科点专项基金资助项目(20040213005)
关键词
BASS模型
参数估计
蚁群算法
Bass model
Parameter estimation
Ant colony optimization