摘要
为了对H+NCl_3+HI体系进行优化,利用Matlab开发了化学动力学模拟计算程序,使用一维预混模型对产生NCl(a^1△)-I传能化学激光的过程进行了化学动力学模拟计算。考察了不同温度下H原子,NCl_3和HI的初始粒子数密度及其化学计量配比对小信号增益系数的影响。固定温度和H粒子数密度,通过在一定的粒子数密度范围内进行扫描计算,确定了最佳的NCl_3/H和HI/H配比范围。最后对H,NCl_3和HI的化学计量配比对最佳小信号增益系数及增益持续时间的影响进行了讨沦。计算结果表明,当温度为400 K,初始H粒子数密度分别为1×10^(15)cm^(-3),1×10^(16)cm^(-3)和1×10^(17)cm^(-3)时,最佳小信号增益系数可分别达到2.6×10^(-4)cm^(-1),2.6×10^(-1)cm^(-3)和2.6×10^(-2)cm^(-3),而相应NCl_3/H和HI/H的初始粒子数密度化学计量配比分别为45%和11%。计算结果还发现,随温度的逐渐升高,获得最佳小信号增益系数的NCl_3/H和HI/H的初始粒子数密度化学计量配比逐渐增大.而获得的最佳小信号增益系数也在增加。
In order to optimize the H+ NCl3 + HI chemical laser system, a Matlab code for chemical kinetics simulations was developed and the process of 生 NCl (a^1△)-I energy transfer chemical laser of the system was simulated using a one-dimensional premixed model. The influences of H, NCl3 and HI initial number densities and their ratios on small signal gain at different temperatures are examined. The optimum NCl3/H and HI/H ratios are determined by scanning computations when the temperature and H number density are fixed. Finally, the influence of H, NCl3 and HI ratios on maximum small signal gain coefficients and gain durations are discussed. It is shown that when temperature is assumed 400 K, initial H number densities are assumed 1 × 10^15 cm^-3 , 1 × 10^16 cm^-3 , 1 × 10^17 cm^- 3, the maximum small signal gain coefficients can reach 2.6 × 10^-4 cm^- 1 , 2. 6 × 10^- 3 cm^- 1 and 2.6 × 10^- 2 cm^-1 respectively. The optimum NCl3/H and HI/H ratios to achieve maximum small signal gain are 45 % and 11 %, respectively. It is also shown that the optimum NCl3/H and HI/H ratios increase with the temperature, as well as the maximum small signal gain coefficients.
出处
《中国激光》
EI
CAS
CSCD
北大核心
2009年第2期367-373,共7页
Chinese Journal of Lasers