期刊文献+

H+NCl_3+HI化学激光体系动力学模拟 被引量:1

Chemical Kinetics Simulation for H+NCl_3+HI Chemical Laser System
原文传递
导出
摘要 为了对H+NCl_3+HI体系进行优化,利用Matlab开发了化学动力学模拟计算程序,使用一维预混模型对产生NCl(a^1△)-I传能化学激光的过程进行了化学动力学模拟计算。考察了不同温度下H原子,NCl_3和HI的初始粒子数密度及其化学计量配比对小信号增益系数的影响。固定温度和H粒子数密度,通过在一定的粒子数密度范围内进行扫描计算,确定了最佳的NCl_3/H和HI/H配比范围。最后对H,NCl_3和HI的化学计量配比对最佳小信号增益系数及增益持续时间的影响进行了讨沦。计算结果表明,当温度为400 K,初始H粒子数密度分别为1×10^(15)cm^(-3),1×10^(16)cm^(-3)和1×10^(17)cm^(-3)时,最佳小信号增益系数可分别达到2.6×10^(-4)cm^(-1),2.6×10^(-1)cm^(-3)和2.6×10^(-2)cm^(-3),而相应NCl_3/H和HI/H的初始粒子数密度化学计量配比分别为45%和11%。计算结果还发现,随温度的逐渐升高,获得最佳小信号增益系数的NCl_3/H和HI/H的初始粒子数密度化学计量配比逐渐增大.而获得的最佳小信号增益系数也在增加。 In order to optimize the H+ NCl3 + HI chemical laser system, a Matlab code for chemical kinetics simulations was developed and the process of 生 NCl (a^1△)-I energy transfer chemical laser of the system was simulated using a one-dimensional premixed model. The influences of H, NCl3 and HI initial number densities and their ratios on small signal gain at different temperatures are examined. The optimum NCl3/H and HI/H ratios are determined by scanning computations when the temperature and H number density are fixed. Finally, the influence of H, NCl3 and HI ratios on maximum small signal gain coefficients and gain durations are discussed. It is shown that when temperature is assumed 400 K, initial H number densities are assumed 1 × 10^15 cm^-3 , 1 × 10^16 cm^-3 , 1 × 10^17 cm^- 3, the maximum small signal gain coefficients can reach 2.6 × 10^-4 cm^- 1 , 2. 6 × 10^- 3 cm^- 1 and 2.6 × 10^- 2 cm^-1 respectively. The optimum NCl3/H and HI/H ratios to achieve maximum small signal gain are 45 % and 11 %, respectively. It is also shown that the optimum NCl3/H and HI/H ratios increase with the temperature, as well as the maximum small signal gain coefficients.
出处 《中国激光》 EI CAS CSCD 北大核心 2009年第2期367-373,共7页 Chinese Journal of Lasers
关键词 激光物理 化学动力学模拟 小信号增益 H/NCl3/HI 生NCl(a^1△)-I传能化学激光 laser physics chemical kinetics simulation small signal gain H/NCl3/HI NCI(a^1△)-I energy transfer chemical laser
  • 相关文献

参考文献11

二级参考文献47

  • 1施建华,姜宗福,袁圣付,华卫红.连续波DF/HF化学激光器高超音速低温喷管混合性能的研究[J].中国激光,2005,32(5):627-631. 被引量:2
  • 2王红岩,袁圣付,张鹏,朱孟真,姜宗福.电激励红外多波段化学激光器的光腔参量选择[J].中国激光,2005,32(8):1040-1044. 被引量:6
  • 3张岳龙,房本杰,陈方,赵伟力,桑凤亭,金玉奇.kW级立式氧碘化学激光器的初步实验研究[J].强激光与粒子束,2006,18(1):21-24. 被引量:8
  • 4杜燕贻,束小建,李守先.近共振传能放热对氧碘化学激光器性能的影响[J].光学学报,2007,27(7):1224-1227. 被引量:4
  • 5Robert F. Walter, Robert A. O’Leary. Pressure Recovery in COIL Devices [C]. 25th Plasmadynamics and Lasers Conference, Colorado, AIAA, 1994. 2456
  • 6Richard J. Driscoll, Lamar F. Moon. Pressure recovery in chemical lasers [J]. AIAA Journal, 1977, 15(5):665-673
  • 7M. G. Ktalcherman, V. M. Mal’kov, N. A. Ruban. Experimental investigation of GDL diffusers [C]. AIAA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, AIAA, 1990. 1512
  • 8J. C.Dutton, C. D. Mikkelsen, A. L. Addy. A theoretical and experimental investigation of the constant area, supersonic-supersonic ejector [J]. AIAA Journal, 1981, 20(10):1392-1400
  • 9George Emanuel. Optimum performance for a single-stage gaseous ejector [J]. AIAA Journal, 1976, 14(9):1292-1296
  • 10R. Acebal. Multi-stage steam ejector methodology: model development and application to high energy lasers [C]. AIAA 18th Fluid Dynamics and Plasmadynamics and Lasers Conference, Cincinnati Ohio, AIAA, 1985. 1601

共引文献13

同被引文献25

  • 1R. F. Tate,M. Harris,B. T. Anderson et al.. Short-pulse photolytic iodine laser [C].SPIE,2000,4065:658-665.
  • 2J. Schmiedberger,V. Jirasek,M. Censky et al.. RF discharge generation of I atoms in CH3I and CF3I for COIL/DOIL [C].SPIE,2009,7131:71310E.
  • 3O. Spalek,V. Jirasek,J. Kodymova et al.. Chemical generation of atomic iodine for COIL [C].SPIE,2002,4631:34-42.
  • 4V. N. Azyazov,P. A. Mikheyev,M. V. Vorobyov et al.. Properties of a dc glow discharge iodine atom generator [C].SPIE,2009,7131:71310A.
  • 5V. N. Azyazov,M. V. Vorob′Ev,A. I. Voronov et al.. Parameters of an electric-discharge generator of iodine atoms for a chemical oxygen-iodine laser [J].Quantum Electronics,2009,39(1):84-88.
  • 6V. Jirasek,J. Schmiedberger,M. Censky et al.. Generation of I atoms for oxygen-iodine lasers using RF discharge dissociation of various I donors[C].40th AIAA Plasma Dymamics and Lasers Conference,San Antonio,2009,4064:1-9.
  • 7P. A. Mikheyev,A. A. Shepelenko,A. I. Voronov et al.. Production of iodine atoms by dissociating CH3I and HI in a dc glow discharge in the flow of argon [J].J. Phys. D:Appl. Phys.,2004,37(22):3202-3206.
  • 8P. A. Mikheyev,A. A. Shepelenko,A. I. Voronov et al.. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge [J].Quantum Electronics,2002,32(1):1-4.
  • 9V. Jirasek,O. Spalek,J. Kodymova et al.. Chemical generation of atomic iodine for chemical oxygen-iodine laser. I. modelling of reaction systems [J].Chemical Physics,2001,269(1-3):167-178.
  • 10O. Spalek,V. Jirasek,J. Kodymova et al.. Preliminary experimental results on chemical generation of atomic iodine for a COIL [C].SPIE,2001,4184:111-115.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部