期刊文献+

六点七边图的λ-填充与λ-覆盖(英文)

λ-packings andλ-coverings by Graphs With Six Vertices and Seven Edges
原文传递
导出
摘要 λK_v为λ重v点完全图,G为有限简单图,λK_v的一个G-设计(G-填充设计,G-覆盖设计),记为(v,G,λ)-GD((v,G,λ)-PD,(v,G,λ)-CD),是指一个序偶(X,B),其中X为K_v的顶点集,B为K_v中同构于G的子图的集合,称为区组集,使得K_v中每条边恰好(至多,至少)出现在B的λ个区组中.一个填充(覆盖)设计称为最大(最小)的,如果没有其它的填充(覆盖)设计有更多(更少)的区组.本文中,我们构作了三个六点七边图的最大填充与最小覆盖. Let λKv be the complete multigraph with v vertices and G a finite simple graph. A G-design ( G-packing design, G-covering design) of λKv, denoted by (v, G, λ)-GD ((v, G, λ)- PD, (v,G,λ)-CD), is a pair (X,B) where X is the vertex set of Kv and B is a collection of subgraphs of Kv, called blocks, such that each block is isomorphic to G and any two distinct vertices in Kv are joined in exactly (at most, at least) λ blocks of B. A packing (covering) design is said to be maximum (minimum) if no other such packing (covering) design has more (fewer) blocks. In this paper, a maximum (v, G, λ)-PD and a minimum (v, G, λ)-CD are constructed for 3 graphs of 6 vertices and 7 edges.
出处 《数学进展》 CSCD 北大核心 2009年第1期35-43,共9页 Advances in Mathematics(China)
基金 Supported by the National Natural Science Foundation of China(No.10671055).
关键词 G-设计 G-填充设计 G-覆盖设计 G-design G-packing design G-covering design
  • 相关文献

参考文献8

  • 1Gennian, Ge, Existence of holey LSSOM of type 2^n with application to G7-packing of Kv, JSPI, 2001, 94: 211-218.
  • 2Zhang Shucheng, Yin Jianxing, Packing of Kv with certain graphs of five vertices, JSPI, 2002, 106: 387-408.
  • 3Wang Zhiqin and Kang Qingde, Optimal packings and coverings of λKv with graph K5 - P5, Bull. Inst. Combin. Appl., 2004, 41: 22-41.
  • 4Kang Qingde and Wang Zhiqin, Maximum K2,3 packing and mimimum K2,3 covering designs of λKv, Journal of Mathematical Reseach and Exposition, 2005, 25: 1-16.
  • 5Kang Qingde, Zhang Yanfang and Zuo Huijuan, λ-packings and λ-coverings by κ-circuits with one chord, Discrete Mathematics, 2004, 279: 287-315.
  • 6Qingde Kang and Liang Zhihe, Optimal packings and coverings of λDKv with k-circuits, JCMCU, 2001, 39: 203-253.
  • 7Tian Zihong, Du Yanke and Kang Qingde, Decomposing complete graphs into isomorphic subgraphs with six vertices and seven edges, Ars Combinatoria, 2006, 81: 257-279.
  • 8Kang Qinde and Du Yanke, Decomposition of λKv into some graph with six vertices and seven edges, JSPI, 2006, 136: 1394-1409.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部