摘要
最近,Dillon和Dobbertin证明了在有限域F_q(q=2~m)的乘法群中,多项式(x+1)~d+x^d+1(其中d=2^(2k)-2~k+1)的像集是一个新的具有Singer参数的循环差集.利用有限域上的Fourier分析,本文证明了在有限域F_q(q=2~m)的乘法群中,一些用Dickson多项式构造的集合是具有Singer参数的循环差集.
Recently, J. F. Dillon, and H. Dobbertin proved that the image set of function △k (x) = (x + 1)d+ xd+ 1 with d = 2^2k -2k+ 1 is a new cyclic difference set in the additive group of the finite field F2m. Using Fourier analysis on the additive group, we prove that certain sets, constructed by using Dickson polynomials, form cyclic difference sets with Singer parameters.
出处
《数学进展》
CSCD
北大核心
2009年第1期86-92,共7页
Advances in Mathematics(China)
基金
Research partially supported by NSFC(No.10771100).
关键词
循环差集
置换多项式
Dickson多项式
伪随机二元序列
分圆等价类
cyclic difference sets
permutation polynomials
Dickson polynomials
pseu- dorandom binary sequence
cyclotomic equivalence