期刊文献+

一种基于用户特征和时间的协同过滤算法 被引量:27

A Collaborative Filtering Recommendation Based on User Characteristics and Time Weight
原文传递
导出
摘要 协同过滤是个性化推荐系统中采用最广泛的推荐技术,但已有的方法是将用户不同时间的兴趣等同考虑,时效性不足,而且相同用户特征的用户兴趣存在着很大的相似性,针对此问题,提出一种基于用户特征和时间的协同过滤算法,使得越接近采集时间的用户兴趣,在推荐过程中具有更大的权值,并且根据用户的特征来来提高相似用户集的采集,从而提高推荐的准确性。 Collaborative filtering is the most widely used recommendation technology in the personalized recommendation system. However the user's interests in different time have been taken into equal consideration with the method being used, which leads to the lack of effectiveness in the given period of time. The interests of the users who have the same characteristics are very similar. In view of this problem, this paper presents an improved collaborative filtering algorithm, which based on user characteristics and time weight, to make the click interests approaching the gathering time, make the weight of recommendation process bigger, and according to the characteristics of users to enhance the acquisition of similar user, thereby to improve the accuracy of the recommendation.
作者 彭德巍 胡斌
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第3期24-28,共5页 Journal of Wuhan University of Technology
关键词 协同过滤 个性化推荐 时效性 相似用户集 collaborative filtering individual recommendation time weight similar user
  • 相关文献

参考文献6

二级参考文献40

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2黄光球,靳峰,彭绪友.基于兴趣度的协同过滤商品推荐系统模型[J].微电子学与计算机,2005,22(3):5-8. 被引量:20
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.

共引文献652

同被引文献167

引证文献27

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部