期刊文献+

Remaining oil distribution in (Ng_3)~3 bottom water reservoir of Lin 2-6 fault-block in Huimin depression and potential tapping in horizontal well 被引量:6

Remaining oil distribution in (Ng_3)~3 bottom water reservoir of Lin 2-6 fault-block in Huimin depression and potential tapping in horizontal well
下载PDF
导出
摘要 Oil reservoirs with secondary bottom water in Ng33 members (in Guantao formation, Paleogene system) of Lin2-6 fault block in Huimin depression (Bohai Bay Basin) have entered the late stage of ultra-high water-containing-exploitation. Oil exploitation from vertical wells is becoming more and more inefficient. The reservoir type, with water displacing oil and the remaining oil distribution are specifically studied in order to improve the efficiency of the recovery ratio. An integrated scheme for adjusting horizontal wells has been designed and the key technique of the scheme optimized. The study shows that: 1) the positive rhythm of fluvial depositional features is the internal cause of the flooding of oil reservoirs while water injection, injection-production patterns and accumulative petroleum production are the external causes; 2) oil-water driving patterns have transferred from edge water advancing to bottom-water-coning; distribution of the remaining oil mainly concentrates in the upper rhythm and top of the middle rhythm in Ng33 members; 3) a great deal of remaining oil is enriched in high positions of faults, in axes of tiny structures, in stagnation areas among water-injection wells and oil-wells and in tectonic saddle areas with sparse wells. Compared with vertical wells, horizontal wells have advantages such as high recovery, high off-take potential, high critical output, large controlling areas and long time of bottom-water breakthrough. Oil reservoirs with secondary bottom water in Ng3^3 members (in Guantao formation, Paleogene system) of Lin2-6 fault block in Huimin depression (Bohai Bay Basin) have entered the late stage of ultra-high water-containing-exploitation. Oil exploitation from vertical wells is becoming more and more inefficient. The reservoir type, with water displacing oil and the remaining Oil distribution are specifically studied in order to improve the efficiency of the recovery ratio. An integrated scheme for adjusting horizontal wells has been designed and the key technique of the scheme optimized. The study shows that: 1) the positive rhythm of fluvial depositional features is the internal cause of the flooding of oil reservoirs while water injection, injection-production patterns and accumulative petroleum production are the external causes; 2) oil-water driving patterns have transferred from edge water advancing to bottom-water-coning; distribution of the remaining oil mainly concentrates in the upper rhythm and top of the middle rhythm in Ng3^3 members; 3) a great deal of remaining oil is enriched in high positions of faults, in axes of tiny structures, in stagnation areas among water-injection wells and oil-wells and in tectonic saddle areas with sparse wells. Compared with vertical wells, horizontal wells have advantages such as high recovery, high off-take potential, high critical output, large controlling areas and long time of bottom-water breakthrough.
出处 《Mining Science and Technology》 EI CAS 2009年第1期102-107,共6页 矿业科学技术(英文版)
基金 Projects 2003CB214603 supported by the National Basic Research Program of China DMSM200803 by the Open Fund of Key Laboratory of Deposi-tional Mineralization & Sedimentary Mineral, Shandong Province
关键词 Huimin depression oil-reservoir with bottom water remaining oil horizontal well 石油开采 油槽地层水 残油 水平井
  • 相关文献

参考文献8

二级参考文献39

共引文献306

同被引文献112

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部