期刊文献+

MWNTs/TiO_2/聚酯功能复合膜吸附及其净化性能 被引量:6

MWNTs/TiO_2 composite functional membranes and their adsorption properties
下载PDF
导出
摘要 以聚酯工业滤布为基膜,采用溶胶凝胶和浸渍方法制备了具有吸附-光催化功能的多壁碳纳米管(MWNTs)/TiO2涂层的复合膜,该复合膜对模拟水样低浓度(10mg/L)的双酚A具有较高吸附性能.随着复合膜上负载二氧化钛中的MWNTs的比例(17.6%,29.9%,和46.0%)增加,吸附去除率显著提高;吸附饱和的复合膜上的污染物双酚A可通过20W紫外灯(λ=254nm)照射Fenton氧化反应去除.吸附实验和HPLC分析表明,除了超声处理会引起浸渍负载的材料脱落外,复合膜吸附性能恢复较好. Series of composite functional membranes, containing adsorptive multi-walled carbon nanotubes(MWNTs), and photocatalytic TiO2, based on polyethylene (PET) filter cloth, were prepared by using a sol-gel and dip-coating method. The membrane could remove low concentration (10mg/L) BPA (bisphenol A) efficiently from simulate polluted water sample. With the proportional increase of MWNTs to MWNTs+TiO2 (17.6%, 29.9%, 46.0%), removal rate of BPA increased accordingly. The adsorbed BPA on the saturated membrane could be removed by 2h (20W 254nm) UV-Fenton oxidation reaction. Repeated adsorption and HPLC analysis proved that the adsorption capacity of the studied membrane could be regenerated successfully, despite the detachment of MWNTs/TiO2 occurred when ultrasonically treated.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2009年第2期213-218,共6页 China Environmental Science
基金 国家自然科学基金资助项目(20477006) 辽宁省自然科学基金(20052182)
关键词 复合膜 双酚A(BPA) 吸附性能 composite functional membranes bisphenol A (BPA) adsorption property
  • 相关文献

参考文献16

  • 1Rodriguez-Mozaz S, Lopez de Alda M J, Barcelo D. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 2004,1045(12):85-92.
  • 2Charles S, Philip D, Gary M K, et al. A review of the environmental fate, effects, and exposures of bisphenol A [J].Chemosphere, 1998,36(10):2149-2173.
  • 3梁增辉,何世华,孙成均,王福玉,战威,贾凌志,张宏,王福俭,吴德生.引起青蛙畸形的环境内分泌干扰物的初步研究[J].环境与健康杂志,2002,19(6):419-421. 被引量:46
  • 4周鸿,张晓健,王占生.水中内分泌干扰物在我国的研究进展[J].中国给水排水,2002,18(9):26-28. 被引量:20
  • 5Katsumata H, Kawabe S, Kaneco S, et al. Degradation of bisphenol a in water by the photo-Fenton reaction [J]. Journal of Photochemistry and Photobiology A, 2004,162(2/3):297-305.
  • 6Ohko Y, Ando 1, Niwa C, et al. Degradation of bisphenol A in water by TiO2 photocatalyst [J]. Environmental Science Technology, 2001,35(11):2365-2368.
  • 7Xie Y-B, Li X-Z. Degradation of bisphenol A in aqueous solution by H2O2-assisted photo electrocatalytic oxidation [J]. Journal of Hazardous Materials B, 2006,138(3):526-533.
  • 8Cai Y-Q, Jiang G-B, Liu J-E et al. MultiwaUed carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tertoctylphenol [J]. Analytical Chemistry, 2003, 75(10):2517-2521.
  • 9Cai Y-Q, Jiang G-B, Liu J-E et al. Multiwalled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography [J]. Analytica Chimica Acta 2003, 494(1/2):149-156.
  • 10Wang W-D, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. Journal of Molecular Catalysis A: Chemical, 2005,235(1/2):194-199.

二级参考文献24

  • 1何世华 梁增辉 等.双酚A等环境污染物的雌激素效应研究.军队卫生环境医学学术会议论文集[M].天津,2001.121.
  • 2Ito E,Takai A,Kondo F et al.,Comparison of Protein Phosphatase Inhibitory Activity and Apparent Toxicity of Microcystins and Related Compounds.Toxicon,2002,40(7):1017-1025.
  • 3Haider S,Naithani V,Viswanathan P N et al.,Cyanobacterial Toxins:a Growing Environmental Concern.Chemosphere,2003,52(1):1-21.
  • 4Chow C W K,Drikas M,House J et al.,the Impact of Conventional Water Treatment Processes on Cells of the Cyanobacterium Microcystis Aeruginosa.Wat.Res.,1999,33(15):3253-3262.
  • 5Tsuji K,Watanuki T,Kondo F et al.,Stability of Microcystins from Cyanobacteria Ⅳ.Effect of Chlorination on Decomposition.Toxicon,1997,35(7):1033-1041.
  • 6Park H D,Sasaki Y,Maruyama T et al.,Degradation of the Cyanobacterial Hepatotoxin Microcystin by a New Bacterium Isolated from a Hypertrophic Lake.Environ.Toxicol.,2001,16(4):337-343.
  • 7Harada K-I,Ogawa K,Matsuura K et al.,Structural Determination of Geometrical Isomers of Microcystins-LR and RR from Cyanobacteria by Two-Dimensional NMR Spectroscopic Techniques.Chem.Res.Toxicol.,1990,3(5):473-481.
  • 8Burbano A A,Dionysiou D D,Suidan M T et al.,Oxidation Kinetics and Effect of pH on the Degradation of MTBE with Fenton Reagent.Water Res.,2005,39(1):107-118.
  • 9Faust B C,Hoigne J,Photolysis of Fe(Ⅲ)-Hydroxy Complexes as Sources of OH Radicals in Clouds,Fog and Rain.Atmos.Environ.,1990,24(1):79-89.
  • 10Buxton G V,Greenstock C L,Helman W P et al.,Critical Review of Rate Constants for Reactions of Hydrated Electrons,Hydrogen Atoms and Hydroxyl Radicals (·OH/O·-) in Aqueous Solution.J.Phys.Chem.Ref.Data,1988,17(2):513-886.

共引文献83

同被引文献205

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部