期刊文献+

介质导电率成像数值反演的正则化方法 被引量:1

AN INVERSE PROBLEM FOR CONDUCTIVITY IMAGING WITH REGULARIZATION
原文传递
导出
摘要 磁共振技术(MREIT)是一种新的医学成像技术,它利用介质内部的部分磁场信息来重建介质内部的导电率.本文对调和B_z反演算法,提出了利用样条插值函数来处理误差输入数据的正则化方法,并给出了正则化方法的误差估计.在此基础上,我们还考虑了调和B_z算法对多个导电率异常的算法实现,检验了该方法对误差输入数据借助于正则化方法可能达到的空间分辨率.本文的工作为调和B_z算法利用实测的误差数据提供了一条可行的途径. Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique. The basic idea of MREIT is to reconstruct the medium conductivity using the internal magnetic flux information. This paper considers the numerical realization of the well-developed harmonic-Bz algorithm for noisy input data. By constructing the minimizer of the Tikhonov functional in terms of the spline function, we propose a stable realization of harmonic-Bz algorithm. The error estimates are provided. Finally, numerical examples are given to show the validity of the proposed method. Our work provides a feasible way to the realization of harmonic-Bz algorithm for the noisy input data. Also our numerical work gives the applicable scope of harmonic-Bz algorithm.
出处 《计算数学》 CSCD 北大核心 2009年第1期51-64,共14页 Mathematica Numerica Sinica
基金 南京信息工程大学校科研基金(20070052) 江苏省自然科学基金(BK2007101)项目资助.
关键词 椭圆型方程 调和Bx算法 样条函数 TIKHONOV正则化 数值微分 Elliptic equation harmonic algorithm spline functions regularization numerical differentiation
  • 相关文献

参考文献13

  • 1Ozdemir M and Eyiiboglu B M. Novel fast reconstruction algorithm for magnetic resonance electrical impedance tomography[J]. Proc. Biyomut 8th Annual Conf. (Istanbul, Turkey) (CD-ROM), 2002.
  • 2Kwon O, Lee J Y and Yoon J R. Equipotential line method for magnetic resonance electrical impedance tomography[J]. Inverse Problem, 2002, 18: 089-1100.
  • 3Woo E J, Lee S Y and Mun C W. Impedance tomography using internal current density distribution measured by nuclear magnetic resonance[J]. SPIE, 1994, 2299: 377-385.
  • 4Kwon O, Woo E J, Yoon J R, et al. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm[J]. IEEE Trans. Biomed. Eng., 2002, 49: 160-167.
  • 5Seo J K, Yoon J R, Woo E J, et al, Reconstruction of conductivity and current density images using only one component of magnetic field measurements[J]. IEEE Trans. Biomed. Eng., 2003, 50: 1121-1124.
  • 6Park C, Kwon O, Woo E J, et al. Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT) [J]. IEEE Trans. Med. Imag., 2004, 23: 388-394.
  • 7Liu J J, Pyo It C, Seo J K, Woo E J. Convergence properties and stability issues in the MREIT algorithm, Contemporary Mathematics[J]. AMS, 2006, 408: 201-218.
  • 8Liu J J, Seo J K, Sini M. On the convergence of the harmonic Bz algorithm in magnetic resonance electrical impedance tomography[J], to appear in SIAM J. Applied Maths.
  • 9Oh S H, Lee B I, Woo E J, Lee S Y, Kim T S, Kwon O and Seo J K. Electrical conductivity images of biological tissue phantoms in MREIT[J]. Physiol. Meas., 2005, 26: 279-288.
  • 10Susanne C B, Scott L R. The Mathematical Theory of Finite Element Methods[M]. 2nd, Springer, 2002, Texts in Applied Mathematics, Vol.15.

二级参考文献1

共引文献15

同被引文献15

  • 1葛美宝,徐定华,王泽文,张文.一类抛物型方程反问题的数值解法[J].东华理工学院学报,2006,29(3):283-288. 被引量:7
  • 2Eyubolu O,Ider Y Z. Current constrained voltage scaled reconstruction (ccvsr) algorithm for mr-eit and its performance with different probing current patterns[J].Physics in Medicine and Biology,2003.653-671.
  • 3Jeon K,Kim H J,Lee C O. Integration of the denoising,inpainting and local harmonic Bz algorithm for MREIT imaging of intact animals[J].Physics in Medicine and Biology,2010.7541-7556.
  • 4Khang H S,Lee B I,Oh S H. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT):phantom experiments for static resistivity images[J].IEEE Trans Med,2002.695-702.
  • 5Kwon O,Lee J Y,Yoon J R. Equipotential line method for magnetic resmmnce electrical impedance tomography[J].Inverse Problems,2002.1-12.
  • 6Kwon O,Woo E J,Yoon J R. Magnetic resonance electrical impedance tomography(mreit):simulation study of j-substitution algorithm[J].IEEE Transactions on Biomedical Engineering,2002.160-167.
  • 7Lee S H,Seo J K. Noise removal with Gauss curvature-driven diffusion[J].IEEE Transactions on Image Processing,2005,(07):904-909.
  • 8Liu J J,SeoJ K,Sini M. On the convergence of the harmonic Bz algorithm in magnetic resonance electrical impedance tomography[J].SIAM Journal of Applied Mathematics,2007,(05):1259-1282.
  • 9Oh S H,Lee B I,Woo E J. Condutivity and current density image reconstrucion using harmonic Bz algorithm in magnetic resonance electrical impedance tomography[J].Physics in Medicine and Biology,2003,(19):3101-3116.
  • 10Park C,Kwon O,Woo E J. Electrical conductivity imaging using gradient Bz decompositon algorithm in magnetic resonance electrical impedance tomography (MREIT)[J].IEEE Transactions on Medical Imaging,2004,(03):388-394.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部