期刊文献+

最优多进Haar小波及在图像压缩中的应用 被引量:1

OPTIMAL MULTI-BANK HAAR WAVELETS AND THEIR APPLICATION IN IMAGE COMPRESSION
原文传递
导出
摘要 我们提出了最优多进Haar小波的概念,证明了其存在性和唯一性,给出了最优多进Haar小波构造的通用方法,并证明了最优多进Haar小波具有线性相位.在消失矩意义下,我们所得到的最优多进Haar小波优于离散余弦变换.同时,我们用图像缩编码的方法验证了最优多进Haar小波的性能优于离散余弦变换的.新的变换可以化为精确的小整数运算,能非常廉价地用集成电路实现.该变换的实用意义在于给图像和视频压缩提供了一个更好的选择. We have put forward a concept of optimal multi-bank Haar wavelets, shown the existence and the uniqueness, and given a general method of constructing the optimal multi-bank Haar wavelets, and also shown that the optimal multi-bank Haar wavelets have the linear phase. Theoretically, the wavelets constructed in this paper are superior to the discrete cosine transform (DCT) in the meaning of vanishing moments. Also, we have shown experimentally that the optimal multi-bank Haar wavelets perform better than DCT in image compression. New transforms can be implemented with IC economically due to the precise computation of small integers. The applicative significance of new transforms is to provide a better choice for image or video compression.
出处 《计算数学》 CSCD 北大核心 2009年第1期99-110,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(10571049).
关键词 多进小波 图像压缩 最优Haar小波 JPEG Multi-bank wavelets image compression optimal Haar wavelets JPEG
  • 相关文献

参考文献20

  • 1Goodman T N, Lee S L and Tang W S. Wavelets in wandering subspaces[J]. Trans. Amer. Math. Soc., 1993, 338(1): 639-654.
  • 2Chui C and Lian J A. Construction of compactly supported symmetric and anyisymmetric orthonormal wavelets with scale-3[J]. Applied Comput Harmon anal, 1995, 2: 68-84.
  • 3Peng L Z and Wang Y G. The parameterization and algebraic structure of 3-bank wavelets system[J]. Science in China (Series A), 2001, 31(7): 602-614.
  • 4Han B. Symmetric orthonormal scaling functions and wavelets with dilation factor 4[J]. Adv. Comput. Math., 1998, 8: 221-247.
  • 5Wang G Q. Four-bank compactly supported bisymmetric orthonormal wavelets bases[J]. Optical Engineering, 2004, 43(10): 2362-2368.
  • 6彭立中,王永革.具有优美结构的紧支正交小波的构造[J].中国科学(E辑),2004,34(2):200-210. 被引量:15
  • 7黄达人等.多进制小波分析.浙江大学出版社(2001).
  • 8Geronimo J, Hardin D P and Massopust P. Fractal functions and wavelet expansions based several scaling function[J]. J. Approx. theory, 1994, 78: 373-401.
  • 9Jiang Q T. On the design of multifilter banks and orthonormal multiwavelet bases[J]. IEEE Trans. On Signal Processing, 1998. 46(12): 3292-3303.
  • 10Selesnick I W. Balanced multiwavelet bases based on symmetric FIR filters[J]. IEEE Trans. On Signal Processing, 2000, 48(1): 184-191.

二级参考文献8

  • 1[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
  • 2[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 3[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511
  • 4[4]Chui C, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3. Appl Comput Harmon Anal, 1995, 2:68~84
  • 5[5]Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7:137~150
  • 6[6]Jawerth B, Peng Lizhong. Compactly supported orthogonal wavelets on the Heisenberg group. Research Report No. 45. 2001
  • 7[7]Sherman D R, Shen Zuowei. Wavelets and pre-wavelets in low dimensions. J Approximation Theory,1992, 71:18~38
  • 8[8]Heller P N, Resnikoff H L, Wells J R O. Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications. Cambridge, MA: Academic Press, 1992. 15~50

共引文献14

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部