期刊文献+

基于改进的支持向量机方法的多目标图像分割 被引量:3

Segmentation of Multi-target Image Based on Improved Support Vector Machine Approach
下载PDF
导出
摘要 支持向量机方法被看作是对传统学习分累方法的一个好的替代,特别在小样本、高维情况下,具有较好的泛化性能。针对一对一支持向量机方法进行了改进,并采用其对多目标图像进行了分割研究。实验结果表明,支持向量机方法是一种很有前景的图像分割技术。 Support vector machine approach is considered as a good candidate because of its good generalization performance, especially when the number of training samples is very small and the dimension of feature space is very high. In this paper, an improved one-against-one support vector machine is proposed and the segmentation of multi-target image based on the improved one-against-one support vector machine approach is investigated. Experimental results show that support vector machine approach is a promising technique for image segmentation.
出处 《舰船电子工程》 2009年第2期113-115,共3页 Ship Electronic Engineering
关键词 统计学习理论 支持向量机 一对一方法 多目标图像分割 statistical learning theory, support vector machine, one-against-one, segmentation of multi-target image
  • 相关文献

参考文献16

  • 1X.Xue et al.A new method of SAR image segmentation based on neural network[C].Fifth International Conference on Computational Intelligence and Multime dia Applications,2003:149~153
  • 2G.Kuntimad,H.S.Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Transactions on Neural Networks,1999,10 (3):591~598
  • 3V.Vapnik.The nature of statistics learning theory[M].Springer Verlag,New York,1995
  • 4V.Vapnik.Statistical learning theory[M].J.Wiley,New York,1998
  • 5G.Guo,S.Z.Li,K.L.Chan.Support vector machines for face recognition[J].Image and Vision Computing,2001,19:631~638
  • 6S.Li,J.T.Kwok,H.Zhu and Y.Wang.Texture classification using the support vector machines[J].Pattern Recognition,2003,36.2883~2893
  • 7Q,Zhao,J.C.Principe.Support vector machines for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37 (2):643~654
  • 8R.A.Reyna,M.Cattoen.Segmenting images with support vector machines.IEEE Int.Conf.Image Proc.,2000:820~823
  • 9C.W.Hsu,C.J.Lin.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415~425
  • 10J.Weston,C.Watkins.Multi-class support vector machines[R].CSD-TR-98-04,1998:1~9

同被引文献32

  • 1张波,张治英,徐德忠,孙志东,周云,周晓农.应用ETM^+遥感图像监测山区钉螺分布[J].中国寄生虫病防治杂志,2004,17(3):143-145. 被引量:4
  • 2郭巍,伍卫平.遥感用于钉螺孳生地研究现状及展望[J].国外医学(寄生虫病分册),2005,32(2):80-84. 被引量:8
  • 3应伟,王正欧,安金龙.一种基于改进的支持向量机的多类文本分类方法[J].计算机工程,2006,32(16):74-76. 被引量:28
  • 4Jen sen J R. Introductory Digital Image Processing: A Remote Sensing Perspective[M]. Third Edition. Beijing: China Ma chine Press, 2007 : 85-103.
  • 5Li Jing, Allison N M. A comprehensive review of current local features for computer vision[M]. Neurocomputing,2008,71(10- 12) : 1771-1787.
  • 6Marin F, Nozha B. Interactive remote sensing image retrieval using active relevance feedback[J]. IEEE Transactions on Geo- science and Remote Sensing,2007,45(4):818-826.
  • 7Rachel LOT W, Paul Siebert J. Local feature extraction and matching on range images: 2. 5D-SIFT[J]. Computer Vision and Image Understanding, 2009,113 (12) : 1235 1250.
  • 8Chow T W S, Rahman M K M. A new image classification technique using tree-structured regional features[J]. Neuro- computing, 2007,70 (4-6) : 1040-1050.
  • 9Hall M, Frank E, Holmes G, et al. The WEKA data mining software: an update[C]//Sigkdd Explorations. New York, NY, USA.- ACM, 2009 : 10-18.
  • 10SUN Huixian, ZHANG Yuhua, LUO Feilu. A new multires- olution and rotation invariant texture descriptors[J]. Journal of Optoelectronies Laser, 2010,21(3) : 448-451.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部