摘要
给出了一般等式规范到有序类等式规范的变换方法,以及在有序类等式规范上的主要结论。在此基础上.又给出了有序类规范上的一个归纳证明方法。这一方法避免了Jouannaud-Kounalis方法中所谓归纳可归约性检查这一很费时的过程,且我们的合流性检查不依赖于终止性检查。
This paper intreduces a transformation of equational specification into ordcr-sorted equation al specification and the main conclusion of order-sorted equational specification. On this basis, a method of proof by induction is shown in order-sorted specification. With this method it is no necessary to use the so-called 'inductive reducibility test' which is the most expensive part of the Jouannaud-Kounalis algorithm, and makes termination independent of confluence.
出处
《浙江师大学报(自然科学版)》
1998年第2期71-75,共5页
Journal of Zhejiang Normal University(Natoral Sciences)
关键词
多类等式规范
归纳证明
计算机
规范变换
many-sorted equational specificaion
order-sorted equational specification
proof by induction