期刊文献+

面向肺癌CAD的CT图像疑似病灶检测算法 被引量:9

Detection algorithm for suspected lesions in CT images of lung cancer CAD
下载PDF
导出
摘要 CT图像中疑似结节病灶区域的分割和提取是肺癌CAD系统的关键和难点。本文提出一种疑似结节病灶自动检测算法,首先对原始CT图像进行有效、准确的肺实质分割,根据肺结节、气管和血管具有不同的几何特征,构造了一组不同尺度的类圆形结构元素,采用多尺度形态学滤波方法对ROI进行初始分割,再根据各ROI的大小构造相应尺度的二维高斯模板,对各ROI区域进行自适应局部高斯模板匹配,以进一步剔除假阳性。实验结果表明,该算法可以有效地提取出CT图像中类圆形的疑似结节病灶,具有较高的灵敏度和较低的漏诊率,可以为医生诊断早期肺癌病灶提供辅助信息。 Segmenting and extracting suspected nodular lesions from CT images is the key and difficult step for lung cancer CAD system. An automatic detection algorithm is proposed for the suspected nodular lesions in thoracic CT images in this paper. First, lung parenchyma is segmented from original CT image effectively and accurately. Second, according to the different geometry shapes of lung nodules, bronchial tubes and blood-vessels, a series of circle- like structure elements with different dimensions are built, and the multi-scale morphologic filtering is adopted to do the rough segmentation for the regions of interest (ROI). Finally, several two-dimension Gauss templates are designed based on their size of ROI areas, and local template-matching is carried out adaptively between each ROI and its template separately, and some false positive ROI are eliminated. Experiment results indicate that the algorithm can extract suspected nodular lesions effectively, it has relatively high sensitivity and low missed diagnosis rate, and it can provide doctors with auxiliary information for lesion diagnosis in early stage of lung cancer.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第1期1-6,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60671050) 辽宁省自然科学基金(20052021)资助项目
关键词 肺癌CAD 肺结节 疑似病灶 多尺度形态学滤波 局部模板匹配 lung cancer CAD lung nodule suspected lesion multi-scale morphology filtering local template-matching
  • 相关文献

参考文献10

二级参考文献23

  • 1张立国,周正欧.浅地层探地雷达回波倒相的自适应处理[J].电子科技大学学报,2004,33(5):519-522. 被引量:4
  • 2苏畅,徐守义,王承训,王晔.地下管道图象的自动处理和识别[J].自动化学报,1996,22(5):629-633. 被引量:4
  • 3潘纪戌 陈起航 等.肺部高分辨率CT[M].北京:中国纺织出版社,1995.155-156.
  • 4[2]Metin N.Gurcan,Berkman Sahiner,Nicholas Petrick,Heang-Ping Chan,et al.Lung nodule detection on thoracic computed tomography images:preliminary evaluation of a computer-aided diagnosis system[J].Med Phys,2002; 29(11):2552-2558.
  • 5[3]Lin Dawtung,Yan Chungren,Chen Wentai.Autonom-ous detection of pulmonary nodules on CT images with a neural network-based fuzzy system[J].Computerized Medic-al Imaging and Graphics,2005,29:447-458.
  • 6[4]Yosuke Hayase,Yosuke Hayase,Kensaku Mori,Junichi Hasegawa,et al.Methods for Detecting Multiple Small Nodules from 3D Chest X-Ray CT Images[J].Systems and Computers in Japan,36 (9),2005:55-64.
  • 7[1]J Krautkramer, H Krautkramer. Ultrasonic testing of materials. Berlin Heidelberg and New York:SpringerVerlag, 1983.
  • 8[2]章毓晋.图像工程(上册):图像处理和分析.北京:清华大学出版社,1999.
  • 9[3]R.M. Haralick, S. R. Sternberg, X. Zhuang. Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(4) :532~550.
  • 10Daw-Tung Lin,Chung-Ren Yan,Wen-Tai Chen.Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system[J].Computerized Medical Imaging and Graphics,2005,29:447-458.

共引文献46

同被引文献114

  • 1石羽,曹晓光,张弘,张晓鹏.肺结节自动检测算法研究[J].仪器仪表学报,2006,27(z3):2265-2267. 被引量:7
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3陈健,田捷,薛健,戴亚康.多速度函数水平集算法及在医学分割中的应用[J].软件学报,2007,18(4):842-849. 被引量:14
  • 4Sluimer I, Schilham A,Prokop M,et al.Computer analysis of computed tomography scans of the lung: A survey[J].IEEE Transactions on Medical Imaging,2006,25(4):385-405.
  • 5Doi K.Computer-aided diagnosis in medical imaging: Historical review, current status and future potential[J].Computerized Medical Imaging and Graphics, 2007,31 (4/5) : 198-211.
  • 6Dehmeshki J, Ye X J, Lin X Y, et aLAutomated detection of lung nodules m CT images using shape-based genetic algorithm[J]. Journal of System Simulation, 2007,31 (6) :408-417.
  • 7Barash D, Schlick T.Multiplicative operator splittings in nonlinear diffusion: From spatial splitting to multiple timesteps[J].Journal of Mathematical Imaging and Vision,2003,19(1) :33-48.
  • 8Li Q.Selective enhancement filters for nodules,vessels, and airway walls in two-and three-dimensional CT scans[J].Medical Physics, 2003,30(8) : 2040-2051.
  • 9Wu K L,Yang M S.Alternative c-means clustering algorithms[J]. Pattem Recognition, 2002,35 (10) : 2267-2278.
  • 10JEMAL A,MURRAY T,WARD E,et al.Cancer statistics 2005[J].American Cancer Society,2005,55:10-30.

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部