期刊文献+

基于双视角乳腺X线图像的微钙化簇检测 被引量:3

Detection of microcalcification clusters based on two mammographic views
下载PDF
导出
摘要 本文提出了一种通过将两个视角的图像信息进行综合分析的方法,以降低乳腺X线图像中微钙化簇检测中的假阳性率。基于微钙化簇通常出现在两个视角图像中这一事实,文中提出了一种微钙化簇匹配技术:首先把MLO视角探测到的可疑微钙化簇通过空间位置天系找到CC视角中与其相对应的病变区域,形成微钙化簇对;然后对匹配后的每对微钙化簇提取面积、形态、灰度等簇特征,通过特征之间的相似度判断所对应微钙化簇的真伪。实验结果表明:本文的微钙化簇检测算法较单视角检测特异度增加了15%。 To reduce the number of false positive rates, we have developed a new method for computer aided detection of microcalcification clusters using joint analysis of two views of the same breast. A cluster matching technique is proposed based on that the clustered microcalcifications (MCCs for short) should emerge in both views. The algorithm first links a suspicious cluster located in the MLO view with the corresponding location in the CC view using their spatial information and forms a paired cluster, then each cluster candidate is characterized by its single-view features such as size, shape and intensity. Finally a similarity function is built between the features to estimate whether they are true clusters or not. Experiment results show that the specificity measure of the proposed system has increased by 15% compared with the detection algorithm based on single view.
作者 马莉 单雅静
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第1期109-114,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60775016) 浙江省自然科学基金(Y106185)资助项目
关键词 双视角乳腺X线图像 微钙化簇检测 特征匹配 multiple mammographic views microcalcification cluster detection feature matching
  • 相关文献

参考文献1

二级参考文献3

  • 1[2]田村秀行(日).计算机图像处理技术.北京:北京师范大学出版社,1986.
  • 2[4]SUN Kun.Investigation on Auto-measure System of Small Holes by Precision Laser Drilling.IMCC93,1993,3,Hong Kong,247~250.
  • 3袁懿先,靳春芬.小孔的图像处理与圆度误差的评定[J].农业机械学报,1997,28(3):134-138. 被引量:9

共引文献3

同被引文献28

  • 1安宁,林树忠,刘海华,崔慧.图像处理方法研究及其应用[J].仪器仪表学报,2006,27(z1):792-793. 被引量:34
  • 2TOMASZ A. Detection of clustered microcalcifications in small field digital mammography[ J]. Journal of Computer Methods and Programs in Biomedicine, 2006, 81 ( 1 ) : 56-65.
  • 3LEE S K. A computer-aided design mammography screening system for detection and classification of microcalcifications [ J ]. International Journal of Medical Informatics, 2000,60( 1 ) :29-57.
  • 4HSIEH F Y. A novel approach to the detection of small objects with low contrast [ J]. Journal of Signal Processing, 2006,86( 1 ) :71-83.
  • 5KOCH C, ULLMAN S. Shifts in selective visual attention: towards the underlying neural circuitry [ J ]. Journal of Human Neurobiology, 1985 (4) : 219 -227.
  • 6ITTI L, KOCH C, NIEBUR E. A model of saliency - based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254-1259.
  • 7ZHANG J B, REGTIEN P, KORSTEN M. Monitoring of dry sliding wear using fractal analysis [ J ]. Journal of Metrology and Measurement System, 2005,6 (2) : 111-118.
  • 8DAUGMAN J G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustics, Speech and Signal, 1988,36(7) :1169-1179.
  • 9WANG W F, MA L. Liver contour extraction using modified snake with morphological multiscale gradients [ C ]. The 2nd International Conference on Graphic Communications. Wuhan, China, Dec. 2008 : 117-120.
  • 10CHANDHURI B B, Sarker N. Texture segmentation using fractal dimension[ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995,17( 1 ) :72-77.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部