期刊文献+

基于能量的神经元动作电位检测实验研究 被引量:5

Experimental study on neural action potential detection based on energy
下载PDF
导出
摘要 动作电位检测是大脑神经信息处理的前提,大量噪声的存在使得精确检测动作电位活动面临困难。本文基于时域能量算子和频域能量算子,实现了两种胞外记录时低信噪比信号的动作电位提取方法。实验结果表明,在无噪声和高信噪比背景下,基于能量的方法与传统的阈值方法都能获得较好的检测效果;而当将信号中引入高斯噪声后,基于能量方法的检测结果明显优于传统的阈值方法,表明基于能量的方法在高噪声环境下具有较好的检测效果;实验也表明两种基于能量的检测方法各有优势,时域方法具有较低的误检率,而频域方法具有较高的检出率。 Detection of neural action potentials is a prerequisite for neural information processing in brain. The signal usually has a large amount of background noise, which makes it difficult to detect the neural action potentials accurately. Based on the time domain energy operator and frequency domain energy operator, time domain energy method and frequency domain energy method for detection of neural action potentials are constructed in this paper. Experimental results show that these methods can perform as good as traditional threshold detector when the signal-to-noise ratio is high. On the other hand, the proposed methods achieve higher detection ratios than the threshold detector when the signal-to-noise ratio is low. The two methods are effective for the signals with high noise. It is also shown that the time domain energy method and frequency domain energy method have their own preponderance respectively. The time domain energy method gets lower misdetection ratio, while the frequency domain energy method can get more spikes.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第1期193-197,共5页 Chinese Journal of Scientific Instrument
关键词 动作电位 检测 能量 阈值 信噪比 action potential detection energy threshold SNR
  • 相关文献

参考文献8

  • 1丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 2姚舜,刘海龙,陈传平,李向宁.一种获取锋电位的峰值检测算法的改进方案[J].生物医学工程研究,2005,24(1):14-17. 被引量:8
  • 3BANKMAN I N, JOHNSON K O, SCHNEIDER W. Optimal detection, classification, and superposition resolution in neural waveform recordings [ J ]. IEEE Trans Biomed. Eng. , 1993,40(8) :836-841.
  • 4HARRIS K D, HENZE D A, CSICSVARI J, et al. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements [ J ]. Neurophysiol, 2000,84( 1 ) :401-414.
  • 5CHOI J H, JUNG H K, KIM T. A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios [ J ]. IEEE Trans Biomed. Eng. , 2006,53(4) :738-746.
  • 6KAISER J F. On a simple algorithm to calculate the energy of signal[J]. Proc. ICASSP-90, 1990:381-384.
  • 7MUKHOPADHYAY S, RAY G C. A new interpretation of nonlinear energy operator and its efficacy in spike detection [ J ]. IEEE Trans Biomed. Eng., 1998,45 ( 2 ) : 180-187.
  • 8CHOI J H, KIM T. Neural action potential detector using multi-resolution TEO [ J ]. Electron Lett. , 2002, 38 (12) :541-543.

二级参考文献43

  • 1[1]Shahaf G and Marom S. Learning in networks of cortical neurons[J].Journal of Neuroscience, 2001,21(22) :8782 - 8788.
  • 2[2]Jimbo Y, Tateno T, Robinson HPC. Simultaneous Induction of pathway - specific potentiation and depression in networks of cortical neurons[J].Biophysical Journal, 1999,76: 670 - 678.
  • 3[3]Chiappalone M, Vato A, et al. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications[ J]. Biosensors and Bioelectronics, 2003,18: 627 - 634.
  • 4[4]Egert U, Schlosshauer B. A novel orgsnotypic long - term culture of the rat hippocampus on substrate- integrated multielectrode arrays[J]. Brain Research Protocols, 1998,2:229 - 242.
  • 5[6]Novellino A, Vato A, et al. Software tools for data analysis and acquisition from multichannel systems based on microelectrode arrays for electrophysiological measurements[ A]. The 8th National Conference on Sensors and Microsystems[C], Trento, Italy: 2003. 93-94.
  • 6[7]Gerstner W,. Kistler WM. Spiking neuron models: single neurons, populations, plasticity [M]. New York: Cambridge University Press, 2002.2-3.
  • 7[8]Thomas C A, Springer P A, Loeb G E, et al. A miniature microelectrode array to monitor the bioelectric activity of cultured cells[J]. Exp Cell Res., 1972,74:61 - 66.
  • 8RIEKE F,WARLAND D,STEVENCK D R V,et al.Spike:Exploring the neural code[M].Cambridge,MA:The MIT Press,1996.
  • 9WELSH J P,SCHWARZ C.Multielectrode recording from the cerebellum[J].Methods for Neural Ensemble Recordings,1999,5:79-100.
  • 10BANKMAN I N,JANSELEWITZ S J.Neural waveform detector for prosthesis control[C].Proc.17th IEEE EMBS,1995:963-964.

共引文献18

同被引文献58

  • 1丁勇,袁景淇.基于人工神经网络的低信噪比神经元锋电位分类[J].上海交通大学学报,2006,40(5):852-855. 被引量:2
  • 2李强,杨基海,陈香,褚雪忠.基于非线性能量算子的表面肌电信号MUAP发放检测[J].北京生物医学工程,2006,25(4):376-380. 被引量:8
  • 3丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 4FENG Zhou-yan,CHEN Wei-dong,YE Xue-song,ZHANG Shao-min,ZHENG Xiao-jing,WANG Peng,JIANG Jun,JIN Lin,XU Zhi-jian,LIU Chun-qing,LIU Fu-xin,LUO Jian-hong,ZHUANG Yue-ting,ZHENG Xiao-xiang.A remote control training system for rat navigation in complicated environment[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(2):323-330. 被引量:16
  • 5WESSBERG J, STAMBAUGH C R, KRALIK J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates [ J ]. Nature, 2000, 408 : 361-5.
  • 6LEBEDEV M,NICOLELIS M.Brain-machine interfaces:past,present and future[J].Trends in Neurosciences,2006,29(9):536-546.
  • 7BROWN E,KASS R,MITRA P.Multiple neural Spike train data analysis:state-of-the-art and future challenges[J].Nature Neuroscience,2004,7(5):456-461.
  • 8LEWICKI M S.A review of methods for Spike sorting:The detection and classification of neural action potentials[J].Network:Computation Neural System,1998,9(4):53-78.
  • 9WELSH J P,SCHWARZ C.Multi-electrode recording from the cerebellum[J].Methods for Neural Ensemble Recordings,1999,5:79-100.
  • 10LETERLIER J,WEBER P.Spike sorting based on discrete wavelet transform coefficients[J].Journal of Neuroscience Methods.2000,101(2):93-106.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部