期刊文献+

一种改进的顾及像素空间信息的FCM聚类算法 被引量:17

Novel modified fuzzy c-means clustering algorithm considering pixel spatial information
下载PDF
导出
摘要 标准的FCM算法对噪声比较敏感,主要是因为该算法没有考虑像素间的空间信息。为了克服这个不足,本文基于自适应加权均值滤波图像提出了一种用于图像分割的FCM改进算法。该算法通过修改Ahmed聚类算法中的目标函数实现。利用该改进算法进行合成图像和真实图像的实验结果表明,相对于标准的FCM聚类算法和由Ahmed改进的算法,本文中提出的改进算法对于噪声更具有鲁棒性。 Standard FCM algorithm is noise sensitive because of not taking into account the spatial information. To overcome the above problem, this paper proposes a modified FCM algorithm for image segmentation based on adaptive weighted averaging image. The presented algorithm was realized via modifying the objective function given in the Ahmed's algorithm. Experimental results on both synthesized and realistic images show that the presented algorithm performs more robust to noise than the standard FCM algorithm and another FCM algorithm (proposed by Ahmed) do.
作者 康家银
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第1期208-212,共5页 Chinese Journal of Scientific Instrument
关键词 模糊C均值(FCM) 窄间信息 罔像分割 fuzzy c-means (FCM) spatial information image segmentation
  • 相关文献

参考文献9

  • 1CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation : advances and prospects [ J ]. Pattern Recognition, 2001, (34) :2259-2281.
  • 2张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 3CHEN W J, GIGER M L, BICK U. A fuzzy c-means (FCM) -based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images [J]. Academic Radiology, 2006,13( 1 ) :63-72.
  • 4GORRIZ J M, RAMIREZ J, LANG E W, et al. Hard C- means clustering for voice activity detection [ J ]. Speech communication, 2006, (48) : 1638-1649.
  • 5CHUANG K S, TZENG H L, CHEN S W. Fuzzy Cmeans clustering with spatial information for image segmentation [ J ]. Computerized Medical Imaging and Graphics, 2006, (30) :9-15.
  • 6CHEN S C, ZHANG D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Trans. Systems Man Cybernet, B, 2004,34(4) :1907-1916.
  • 7CAI W L, CHEN S C, ZHANG D Q. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[ J]. Pattern Recognition, 2007,40 ( 7 ) : 825-838.
  • 8AHMED M N, YAMANY S M, MOHAMED N. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data [ J ]. IEEE Trans. on Medical Imaging, 2002, (21) : 193-199.
  • 9ZHANG D Q, CHEN S C. A novel kernelized fuzzy c- means algorithm with application in medical image segmentation[J]. Artificial Intelligence in Medicine, 2004, ( 32 ) :37-50.

二级参考文献9

  • 1陈真诚,张锋,蒋大宗,倪利莉,王红艳.利用多分辨率分析的胸部X线数字图像粗糙集滤波增强[J].中国生物医学工程学报,2004,23(6):486-489. 被引量:7
  • 2SELIM S Z,ISMAIL M A.K-means type alogorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,6(1):81-87.
  • 3BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.
  • 4PAWLAK Z.Rough set theory and its application to data analysis[J].Cybernetics and Systems,1998,29(9):661-688.
  • 5PAL S K,PABITRA M.Multispectral image segmentation using the rough-set-initialized EM algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2495-2501.
  • 6MOHABEY A,RAY A K.Rough set theory based segmentation of color image[A].Proceedings of IEEE 19th International Meeting of the North American Fuzzy Information Processing Society[C],2000:338-342.
  • 7WOJCIK Z M.Application of rough sets for edge enhancing image filters[A].International Conference on Image Processing[C],1994,Austin,Texas,USA 2:525-529.
  • 8徐立中,王慧斌,杨锦堂.基于粗糙集理论的图像增强方法[J].仪器仪表学报,2000,21(5):514-515. 被引量:21
  • 9董广军,范永弘,罗睿.基于粗糙集的图像智能增强预处理[J].计算机工程,2003,29(13):57-58. 被引量:3

共引文献31

同被引文献137

引证文献17

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部