期刊文献+

局部不变特征提取算法的研究及其在图像识别中的应用 被引量:8

Local invariant descriptor applied in image recognition
下载PDF
导出
摘要 异型纤维自动检验过程中,传统边沿检测方法,受到图片质量的影响较大。而尺度不变特征变换(SIFT),直接从原始的灰度图像中提取特征信息,相对受图片质量的影响较小。本文提出了一种基于尺度不变特征变换以及支持向量机算法的纤维识别方法,实现了一个以该理论为基础的纤维自动识别系统,并获得了较为理想的识别结果。验证了尺度不变特征变换算子具有较强的稳定性、抗噪性、仿射不变性等特性。 In the process of shaped fibers inspection, the traditional method of the edge detection is influenced by the quality of the images. Scale Invariant Feature Transform (SIFT) based on the original images set is less influenced by the quality of the images. And the characteristics of SIFT are invariable,which are the translation, rotation and affine of image in the scale space. In the paper,a fiber recognition method based on SIFT and SVM (Support Vector Machine) is proposed. Sequentially, an automatic fiber recognition system is built. The experimental result shows that the method is effective.
作者 彭皓
出处 《电子测量技术》 2009年第2期135-139,共5页 Electronic Measurement Technology
基金 全国优秀博士学位论文作者专项资金资助项目(200350) 教育部留学回国人员科研启动基金资助项目
关键词 尺度不变特征变换 局部不变特征 尺度空间 支持向量机 scale invariant feature transform local invariant descriptor scale space support vector machine
  • 相关文献

参考文献16

  • 1DAVID G L. Distinctive image features from scaleinvariant keypoints [J]. International Journal of Computer Vision, 2004.
  • 2SCHAFFALITZKY F, ZISSERMAN A. Multi-View Matching for Unordered Image Sets [C]. Proc. Seventh European Conf. Computer Vision, 2002 : 414- 431.
  • 3FERRARI V, TUYTELAARS T, GOOL L V. Simultaneous Object Recognition and Segmentation by Image Exploration [C].Proc. Eighth European Conf. Computer Vision, 2004: 40-54.
  • 4MIKOLAJCZYK K, SCHMID C. Indexing Based on Scale Invariant Interest Points[C]. Proc. Eighth Int'l Conf. Computer Vision,2001 : 525-531.
  • 5戚世贵,戚素娟.一种基于图像特征点的图像匹配算法[J].国外电子测量技术,2008,27(1):3-4. 被引量:19
  • 6FERGUS R, PERONA P, ZISSERMAN A. Object Class Recognition by Unsupervised Scate-Invariant Learning [C]. Proc. Conf. Computer Vision and Pattern Recognition, 2003 : 264-271.
  • 7LOWE DG. Object recognition from local scale invariant features[C].Proc. of the Intnl. Conf. on Computer Vision, Corfu, Greece, 1999 : 1150-1157.
  • 8MIKOLAJCZYKK, SCHMID C. A performance evaluation of local deseriptors[C]. Proceedings of the Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA, 2005: 257-264.
  • 9CORTES C, VAPNIK V. Support vector networks [Z].Machine Learning, 1995,20: 273-297.
  • 10VAPNIK V. The Nature of Statistical Learning Theory [ M]. Second Edition. Springer, New York, 2001.

二级参考文献6

  • 1胡明昊,任明武,杨静宇.一种快速实用的特征点匹配算法[J].计算机工程,2004,30(9):31-33. 被引量:32
  • 2LOWED G. Distinctive image features from scale-invariant key points[C]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 3LOWED G. Object recognition from local scale-invariant features[C]. International Conference on Computer Vision. Corfu, Greece, 1999: 1150-1157.
  • 4MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [C]. International Conference on Computer Vision & Pattern Recongnition, 2003:275-263.
  • 5BEIS J S, LOWED G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]. Proceedings of the IEEE 1997 Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 1000-1006.
  • 6赵向阳,杜利民.一种全自动稳健的图像拼接融合算法[J].中国图象图形学报(A辑),2004,9(4):417-422. 被引量:131

共引文献18

同被引文献51

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部