摘要
非线性振动系统中的运动形式有三种可能:周期运动、拟周期运动和混沌·用Poincaré映射可确定出系统周期运动,用谐波小波变换可区分拟周期运动和混沌·由此可准确地确定出参数空间中各种不同形式运动所对应的存在域·
he response of a nonlinear vibration system may be of three types, namely, periodic, quasiperiodic or chaotic, when the parameters of the system are changed. The periodic motions can be identified by Poincaré map, and harmonic wavelet transform (HWT) can distinguish quasiperiod from chaos, so the existing domains of different types of motions of the system can be revealed in the parametric space with the method of HWT joining with Poincaré map.
出处
《应用数学和力学》
CSCD
北大核心
1998年第6期557-563,共7页
Applied Mathematics and Mechanics
基金
国家自然科学基金
国家教委博士后基金
关键词
小波变换
非线性振动
分叉
混沌
wavelet transform, nonlinear vibration, bifurcation chaos