期刊文献+

基于样本分位数和log|SαS|的SαS分布参数估计方法 被引量:1

Parameters estimation of symmetric α-stable distribution based on quantiles of samples and log|SαS| method
下载PDF
导出
摘要 α稳定分布是一类重要的非高斯随机分布,广泛应用于水声、大气和生物医学信号处理等领域。α稳定分布的特征函数由α、β、γ和a等4个参数决定,因此对于参数的估计具有极其重要的作用。由于α稳定分布没有闭合形式的概率密度函数,大多数传统的依赖于显示密度函数的数学统计方法不再适用。本文分别采用基于样本分位数法和log|SαS|法对SαS分布的α和γ参数进行估计,克服了传统方法中依赖概率密度函数的缺点,仿真结果显示两种算法均能给出较好的估计结果,并且能够满足后期研究的需要。 α-stable distribution is a sort of important non-Gaussian random distribution and is widely applied to water sound, at- mosphere and biomedicine signal processing field and so on. Its characteristic function is determined by the parameters α,β,γ and a, therefore it is important to estimate the parameters. Most of traditional methods based on the probability density function can not be applied because α-stable distribution has not the closed probability density function(PDF). In this paper, we estimate the parameters α and γ of SαS distribution based on quantiles of samples method and log|SαS| method. The two methods overcome the shortcomings of traditional methods based on PDF. The computer simulations show that the two methods both can give better estimated results and the results can satisfy the needs of the study.
出处 《国外电子测量技术》 2009年第1期27-29,共3页 Foreign Electronic Measurement Technology
基金 江苏省图像处理与图像通信重点实验室开放课题(ZK206008)资助项目
关键词 Α稳定分布 基于样本分位数法 LOG |SαS|法 SαS分布 参数估计 α-stable distribution method based on quantiles of samples log|SαS| method SαS distribution parameters estimation
  • 相关文献

参考文献6

  • 1NIKIAS C L, SHAO M. Signal processing with alpha- stable distributions [M]. New York : Wiley, 19 9 5.
  • 2MA X,NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Trans on Signal Processing, 1996,44(11) : 2669-2687.
  • 3MAX Y,NIKIAS C L. Parameter estimation and blind channel identification in impulsive signal environments[J]. IEEE Trans on Signal Processing, 1995, 43(12) : 2884-2897.
  • 4WANG ZH J,HU X L, WANG L P. parameter estimation of wavelet coefficient for image based on fractal lower order statistics[C]. Proceedings of ICEMU 2007, Xi' an, China, 2007,2 : 782-786.
  • 5MCCULLOCH J H. Simple consistent estimators of stable distribution parameters[J]. Commun. Statist. Simula, 1986,15(4) : 1109-1136.
  • 6BELGF M, MILLER E L. A sliding window RLS-like adaptive algorithm for filtering alpha-stable noise[J]. IEEE Signal Processing Letter, 2000,7 (4) :86-89.

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部