期刊文献+

基于角相似性的k最近邻搜索研究

Angular Similarity Based K-nearest Neighbor Search
下载PDF
导出
摘要 在高维空间中k最近邻搜索(KNNS)应用非常广泛,但是目前很多KNNS算法都根据欧氏距离对数据进行索引和搜索,不适合采用角相似性的应用。本文提出一种基于角相似性的k最近邻搜索算法(AS—KNNS)。该算法先提出基于角相似性的数据索引结构(AS-Index),参照一条中心线和一条参照线,将数据以系列壳.超圆锥体方式进行组织并分别线性存储;然后确定查询对象的空间位置,有效确定一个以从原点到查询对象的直线为中心线的超圆锥体并在其中进行搜索。实验结果表明,AS-KNNS算法较其他k最近邻搜索算法有更好的性能。 The k-nearest search algorithm(KNNS) is widely used in the high dimension space. However, the current KNNS uses Euclidean distance to index dataset and retrieve the target object, which is not suitable for those applications based on angular similarity. In this paper, the angular similarity based on KNNS (AS-KNNS) is proposed. AS-KNNS firstly proposes that the indexing structure should be based on angular similarity, refer to a center line and a referenced line to organize dataset with the method of the shell-hypercone, and store them linearly. Then it determines the space place for the target object, making a hypercone which takes the line connecting the origin point and the target object as center, and searches the hypercone for the target. The experiment shows that the performance of AS-KNNS is superior to those other KNNS.
出处 《情报学报》 CSSCI 北大核心 2009年第1期58-63,共6页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目:“Web2.0环境下信息自组织与序化研究(No.70773086)” 湖北省教育厅中青年项目:Web2.0环境下信息自组织的演化仿真与关键支撑技术研究(No.Q20081502) 湖北省教育厅人文社科项目:基于Agent的电子商务推荐系统研究.
关键词 数据分割 k最近邻搜索 角相似性 壳-超圆锥体 data partitioning, k-nearest neighbor search, angular similarity, shell-hypercone
  • 相关文献

参考文献12

  • 1David A Bell, Guan J W, Bi Yaxin. On Combining Classifier Mass Functions for Text Categorization [ J ]. IEEE transactions on knowledge and data engineering, 2005, 17 (10) : 1307-1319.
  • 2George T, Merugu S. A Scalable Collaborative Filtering Framework Based on Co-Clustering [ C ]. Fifth IEEE International Conference on Data Mining, 2005:625-625.
  • 3Keogh E, Chakrabarti K, Mehrotra S. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases [ C ]. ACM Transactions on Database Systems (TODS) , 2002,27(2) :188-228.
  • 4Yu Cui. Indexing the Relative Distance-An Efficient Approach to KNN Search[J]. High-Dimensional Indexing, 2002, 2341:85-108.
  • 5Zaher M Aghbari. Array-index: a plug&search K nearest neighbors method for high-dimensional data [ J ]. Data & Knowledge Engineering, 2005,52: 333-352.
  • 6Friedman J H, Baskett F, Shustek L J. An Mgorithm for Finding Nearest Neighbors [ J ] . IEEE Trans. Computers, 1975 : 1000-1006.
  • 7Joseph Kuan, Paul Lewis. Fast k nearest neighbor search. For R-tree family [ C ]. International Conference on Information, Communications and Signal Processing, 1997: 9-12.
  • 8Yu C, Ooi B C, Tan K L, Jagadish H V. Indexing the distance: An efficient method to knn processing [ C ]//Proceeding of the 27th VLDB Conference, 2001 : 421-430.
  • 9Sameer A. Nene, Shree K Nayar. A Simple Algorithm for Nearest Neighbor Search in High Dimensions [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9) :989-1013.
  • 10Hanan Samet. Depth-First K-Nearest Neighbor Finding Using the MaxNearestDist Estimator[ C]//Proceedings of the 12th International Conference on Image Analysis and Processing, 2003:486-491.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部