期刊文献+

基于蚁群算法与K-means算法相结合的Web用户聚类 被引量:4

An Integration of Ant Colony Optimization and K-means for Web Users Clustering
下载PDF
导出
摘要 Web用户聚类是指用聚类算法产生用户会话的聚类,是电子商务中的一个重要问题。该问题的难度在于有成千上万的会话需要聚类,而且每个会话都可描述为一个高维向量。此外,该问题就聚类的数目而言具有指数的复杂性,是一个NP-难的问题。本文提出一种新的聚类方法,该方法将蚁群算法与K-means算法相结合对用户会话进行优化聚类。实验结果表明,与K—means算法相比,该方法在Web导航推荐的应用中具有更好的性能。 Web user clustering is an important issue in E-commerce. The clustering algorithm should create clusters of user sessions. This problem is difficult because thousands of sessions may have to be clustered, and also because each session is described for instance as a vector with high dimensionality. Moreover, this problem possesses exponential complexity in terms of number of clusters and become an NP-hard problem. This paper presents a novel methodology combining ant colony optimization with K-means for optimally clustering user sessions. Experimental results show that our approach is better than using only K-means in the application of Web navigation recommendation.
出处 《情报学报》 CSSCI 北大核心 2009年第1期105-108,共4页 Journal of the China Society for Scientific and Technical Information
基金 该论文获得国家自然科学基金项目(No.70672097)的资助.
关键词 WEB使用挖掘 蚁群优化 WEB用户聚类 Web导航推荐 电子商务 Web usage mining, ant colony optimization, Web user clustering, Web navigation recommendation, E- commerce
  • 相关文献

参考文献12

  • 1Cooley R. Web usage mining: Discovery and application of interesting patterns from web data [ D ]. University of Minnesota, 2000.
  • 2Abraham A, Ramos V. Web usage mining using artificial ant colony clustering and linear genetic programming[ C ]// The 2003 Congress on Evolutionary Computation, 2003: 1384-1391.
  • 3Kim Y S. Weighted order-dependent clustering and visualization of web navigation patterns. Decision Support System, 2006.
  • 4Pierrakos D, Paliouras G, Papatheodorou C, et al. Web usage mining as a tool for personalization: A survey [ J ]. User Modeling and User-Adapted Interaction, 2003, 13: 311-372.
  • 5Yan T, Jacobsen M, Garcia-Molina H, et al. From user access patterns to dynamic hypertext linking[C]// Proc. of 5^th WWW, 1996 : 1007-1014.
  • 6Heer J, Chi E H. Identification of Web user traffic composition using multi-modal clustering and information scent[C]//Proc, of the Workshop on Web Mining, SIAM Conference on Data Mining, 2001:51-58.
  • 7Xie Y, Phoha V. Web user clustering from access log using belief function [ C ] //proceedings of the ACM K-CAP' 01, First International Conference on Knowledge Capture, Victoria, British Columbia, Canada,2001:202-208.
  • 8Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004,34(2) : 1161-1172.
  • 9Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem[J] . BioSystems, 1997,43:73-81 .
  • 10Cooley R, Mobasher B, Srivastava J. Data preparation for raining World Wide Web browsing patterns [ J ] . Journal of Knowledge and Information System, 1999,1 (1) : 5-32.

同被引文献65

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部